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Abstract

Reactive Programming (RP) is a new programming language paradigm which specifically targets reactive applications.
Over the last few years, more and more companies and developers adopted RP to develop Web applications, user in-
terfaces and asynchronous event-based software. RP has become popular especially in the JavaScript community where
libraries like Angular.js and Bacon.js have embraced the reactive paradigm supporting automated propagation of changes.

It has been shown that RP enables the developer to implement reactive applications in a composable way, abstracting
over implementation details such as data dependency detection and making reactive software easier to understand.
However, in most cases RP abstractions introduce significant performance costs in comparison to the Observer design
pattern. Also, memory requirements are significantly higher.

In this thesis, we apply just-in-time compilation (JIT) to improve the performance of RP. We implemented an RP
extension to Ruby based on the Truffle language framework. JIT compilation is provided by the Graal Virtual Machine
(VM). Our evaluation shows that RP combined with JIT compilation can achieve a runtime performance comparable to
the Observer design pattern.



Zusammenfassung

Reaktive Programmierung (RP) ist ein neues Programmierparadigma für die Entwicklung von reaktiven Anwendungen.
In den letzten Jahren haben immer mehr Firmen und Entwickler die reaktive Programmierung für die Entwicklung von
Webanwendungen, Benutzeroberflächen und asynchroner ereignisorientierter Software übernommen. Besonders in der
JavaScript Community ist die reaktive Programmierung sehr populär geworden. Dort haben Bibliotheken wie Anular.js
und Bacon.js dieses Programmierparadigma übernommen.

Für die reaktive Programmierung wurde gezeigt, dass sie es Entwicklern ermöglicht, reaktive Anwendungen in einer
zusammensetzbaren Art zu entwickeln, über Entwicklungsdetails wie die Datenabhängigkeitserkennung abstrahiert und
reaktive Anwendungen besser verständlich macht. Allerdings erhöhen die Abstraktionen, welche die reaktive Program-
mierung einführt, in der Regel die Laufzeit signifikant im Vergleich zum Beobachter-Entwurfsmuster.

In dieser Arbeit verwenden wir Just-in-time-Kompilierung (JIT-Kompilierung) um die Performance der reaktiven Pro-
grammierung zu verbessern. Wir haben Ruby um die reaktive Programmierung erweitert, hierfür haben wir das Truffle
Sprachentwicklungs-Framework verwendet. Die JIT-Kompilierung wird von der Graal Virtual Machine (VM) bereitge-
stellt. Unsere Evaluation zeigt, dass die reaktive Programmierung mit JIT-Kompilierung eine ähnliche Laufzeitperforman-
ce wie das Beobachter-Entwurfsmuster erzielen kann.
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1 Introduction

Reactive programming is a recent programming paradigm tailored for the development of reactive applications. Reactive
programming languages come in different flavors, but the common idea is that developers provide a description of
how data flow through an application in a declarative style. The language runtime handles change propagation and
recalculation of dependent values when needed.

Despite being a recent approach, reactive programming is already a widely adopted programming model. Among
others, Microsoft and Netflix are using reactive programming. From a design standpoint, reactive programming has the
goal to reduce the complexity of reactive applications. In addition, reactive programming makes them more maintainable
and less error-prone. However, the powerful abstractions provided by this approach introduce a significant runtime cost.
Applications written in the reactive style are significantly slower than their counterparts written with the Observer design
pattern.

In this thesis, we contribute to address this issue with the development of Reactive Ruby, a new prototypical reactive
programming language. Reactive Ruby is an extension of Truffle Ruby, an existing implementation of the Ruby language.
Truffle Ruby uses the Truffle framework for the implementation of the Ruby language.

Truffle is a language implementation framework which allows developing interpreters and optimizations for them.
Together with the Graal just-in-time (JIT) compiler, Truffle can generate optimized code for the developed languages.
As a result of the code generation process achieved by Truffle, the Reactive Ruby runtime can benefit from a number of
optimizations. Among others, it offers map fusion and JIT compilation.

The problems with Object-Oriented Programming for Reactive Programming
The traditional way to implement reactive applications is to use the Observer design pattern [25]. However, the

Observer design pattern is widely criticized [30, 13, 8]. One of the problems is that it mixes the propagation logic
and the application logic. The Observer design patten relies on callbacks for its implementation. Moreover, it uses
side effects to change the program state during propagation. These side effects make it hard to understand reactive
applications because data and control flow are mixed. Another problem is that the Observer design pattern does not
provide functionalities to compose reactions – callbacks return void. Unfortunately, this issue appears frequently in
practice.

This becomes obvious in the example of the drag and drop functionality. In this case it is necessary to observe the
mouse down event, the mouse up event and the mouse move event. Therefore, for solving this simple problem it is
already necessary to compose at least 3 observables.

Since the Observer design pattern has no functionality to compose several observables, the developer needs to compose
them manually. However, the implementation of several composed observables is complex. That is because the observers
are manipulating the program state which other observer also work with.

If the propagation order is important, the composition becomes especially difficult. That is the case because there is no
ordering when the Observer design pattern executes a call back. Therefore, the developer needs to build a state machine
to handle the unordered notifications.

All these issues concerning the Observer design pattern make it difficult to implement and maintain a reactive ap-
plication. This is a well-known issue in industry. As Maier points out [30], Adobe has reported that almost half of the
reported bugs of desktop applications are related to the event handling logic [35]. Some authors are going as far as to
call problems related to the Observer design pattern the callback hell [18].

There have been several attempts to fix these problems. Some domains are using data flow languages, like network
programming for example [10]. Event-driven programming (EDP) and aspect-oriented programming (AOP) can also be
employed to simplify reactive applications [26]. However, both EDP and AOP still use inversion of control and therefore
inherit some problems, which are also present in the Observer design pattern [38].

Functional reactive programming (FRP) and reactive programming provide a solution to theses problems. They enable
a declarative way of writing reactive applications. Furthermore, they do not rely on inversion of control to develop
reactive applications. Initially, FRP was introduced in Haskell, where it provided a good abstraction to implemented GUIs
[19]. Later Flapjax [34] showed that these ideas transfer to the development of web applications in the mainstream
language JavaScript.

Reactive programming provides the following characteristics which enable it to be a good replacement of the Observer
design pattern. Reactive programming does not use inversion of control. Instead, the developer explicitly defines the con-
trol flow through the application. In addition, reactive programming separates the propagation logic and the application
logic. Moreover, it enables the developer to implement most of the application logic without side effects. Also, reactive
programming can provide certain guarantees concerning the execution order. Lastly, it offers composable reactive values.

Performance Issues
There is some evidence in literature that reactive programming improves the design of reactive applications [37] and

developers’ code comprehension [36]. However, the propagation of changes in reactive programming is significantly
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slower than in the Observer design pattern. Benchmarks have shown that the performance of applications written
in reactive programming languages are slower than the Observer design pattern by more than a factor of 1.4 [30].
However, these numbers are very optimistic. In addition, some reactive programming libraries are slower than the
Observer design pattern by more than a factor of 50 [30]. Burchett et al. [9], show that the static optimization lowering,
can sometimes increase the performance of FrTime [12] by almost a factor of 100 and even then it is still significantly
slower than a reference implementation that did not use FRP [9]. This performance disadvantage is even more drastic
when the compiler starts to inline parts of the Observer design pattern.

In comparison to the Observer design pattern, the performance disadvantage of reactive programming is expected.
That is because reactive programming introduces unnecessary indirections in the update code. Besides the inherent
complexity of reactive programming, it often comes with additional functionality, which adds further complexity. Amung
these functionalities are guarantees concerning the execution order and a glitch-free propagation. In addition, some
reactive programming languages provide functionality for error handling in the propagation. In summary, like most
abstractions reactive programming comes at the cost of reducing the runtime performance.

All in all, reactive programming is an appealing solution to develop reactive applications but the performance penalty it
introduces is a serious issue. Several efforts to address this problem have been made. For example, researchers proposed
to increase the performance by reducing the expressive power of reactive programming libraries [42]. Lowering, which
describes a static optimization, attempts to reduce the number of nodes in the dependency graph by merging nodes [9].
In addition, optimizations have been introduced for specific cases like reactive collections [31].

In this thesis we propose a new way to increase the performance of reactive programming languages via just-in-time
(JIT) compilation. It is a known technique to speed up interpreted languages. Java is one prominent example which
heavily uses JIT compilation to compile on the fly native code portions of Java byte code that are frequently executed.
In recent years JIT compilation also had huge success to speed up dynamically-typed languages. An example for this
is JavaScript. Both the Mozilla SpiderMonkey JIT and the Crankshaft JIT compiler of the V8 engine greatly increase
the performance of JavaScript. For that, both JIT compilers also provide, besides classical optimization techniques,
speculative optimizations [24, 11]. Graal [17] is another JIT compiler which demonstrated the effectiveness of JIT
compilation to speed up dynamically-typed languages. JIT compilation provides a tool to speed up dynamically-typed
languages which are not that well-optimizable by static compilers.

In some sense, the state of reactive programming languages reminds us of dynamic languages like JavaScript a few
years ago. The key for their success and spreading has been aggressive virtual machine (VM) optimization. In particular,
specialized JIT compilations greatly increased the performance of dynamic languages like JavaScript.

Therefore, we use JIT compilation to optimize reactive programming. In our work we use the Graal JIT compiler
because it is designed to provide JIT compilation not only for one specific language but for a wide range of languages.
Furthermore, it allows highly speculative optimization. Additionally, it offers with Truffle [44] a language framework
which helps to develop languages that provide JIT compilation. In Truffle the developer implements the languages as an
abstract syntax tree (AST) interpreter. In addition, the developer can provide optimization and he can influence the JIT
compilation of Graal.

Truffle Ruby [7] is an implementation of the Ruby language which uses Truffle as an interpreter and Graal as a VM and
a JIT compiler. Ruby is a dynamically-typed, object-oriented general-purpose programming language. Ruby also supports
functional programming as well as meta programming. Truffle Ruby was initially developed by Chris Seaton [39] during
an internship at Oracle Labs. It is published under an open source license and is now available for researchers. As it is
part of the JRuby repository, developers can activate it as an experimental feature. In May 2015, Truffle Ruby supported
over 90% of the core Ruby language and approximately 70% of the core libraries [22, 21, 23]. It is currently actively
maintained and we expect that it will to be further developed in the near future [2].

Contribution of the Thesis
In this thesis we apply JIT compilation to speed up the execution of reactive programming languages. We use the

Graal JIT compiler and the Truffle language framework to implement Reactive Ruby a reactive programming language
based on Truffle Ruby. In addition, we provide optimization for certain structures in the dependency graph and for the
propagation algorithm. Furthermore, Reactive Ruby offers optimizations for reactive operators.

The goal is to specialize the reactive programming language to achieve a performance which is similar to an imple-
mentation based on the Observer design pattern. In a number of benchmarks, Reactive Ruby achieves the same runtime
performance as the Observer design pattern, still considering a version of it amenable for JIT compilation.

The contributions of this thesis are the following

• We implemented the reactive programming language Reactive Ruby. It extends Truffle Ruby and it is implemented
inside the Truffle Ruby interpreter. To the best of our knowledge, it is the first work which attempts to improve the
performance of reactive programming by customizing the JIT compilation.

9



• We evaluate the performance of Reactive Ruby with JIT compilation support. The evaluation shows that Reactive
Ruby with JIT compilation performs well compared to other reactive programming implementations. Reactive
Ruby successfully inlines parts of the propagation code and performs map fusion. In benchmarks, the performance
of Reactive Ruby applications is in the same area as reference applications which are implemented using the
Observer design pattern. In summary, Reactive Ruby is able to reduce the performance gap between reactive
programming and the Observer design pattern.

Thesis Structure
The other parts of the thesis are structured as follows:

• Chapter 2 describes (functional) reactive programming. It provides an overview of what reactive programming
is, describes some characteristics which can be used to classify reactive programming languages and summarizes
some important reactive programming languages.

• Chapter 3 describes Truffle and Graal. For that, it illustrates the Graal VM and the Truffle language implementation
framework.

• Chapter 4 describes the Reactive Ruby language as well as the runtime system. The chapters present the design of
the language Reactive Ruby, the propagation algorithm and the implementation of Reactive Ruby.

• Chapter 5 evaluates the performance of Reactive Ruby. The chapter explains the design of the benchmarks and
describes the evaluation of the peak performance of Reactive Ruby, the impact of the JIT compiler and the warm-up
chraceristics of Reactive Ruby.

• Chapter 6 summarizes the central aspects of the work. In addition, the chapter gives an overview over the existing
limitations and some possible future work.

10



2 (Functional) Reactive Programming

This chapter explains reactive programming. As it is still a new paradigm, different reactive programming languages can
still differ to a great extent. Therefore, this chapter provides a general description of reactive programming and explains
some major differences. In addition, it provides some definitions which this thesis uses. However, it does not give an
exhaustive overview over every last detail of reactive programming.

2.1 Introduction

Reactive programming provides the developer with abstractions to develop reactive applications in a declarative style.
For that reactive programming languages automatically handle how changes are propagated through the applications:
the developer only needs to define what happens when a value changes. Consider the example in listing 1.

a = 1
b = 2
c = a + b
a = 2

Listing 1: A program to demonstrate the difference between reactive programming and non-reactive programming.

In a traditional programming language like Java, the value of c is 3 at the end of the execution. However, in a reactive
programming language the value of c is 4. When the last instruction assigns the value 2 to a the reactive programming
language will automatically recompute the value of c since it depends on the variables a and b.

In the example (listing 1), the developer defines that c should be the sum of a and b. He does not need to write the
code to ensure that. The language ensures that c is always the sum of a and b for the developer. This has the advantage
of not having to write the propagation logic, for the developer. To conclude the example one can argue that the code is
more legible and the reactive code is written declaratively.

The general structure of the chapter is inspirited by a paper of Bainomugisha et al. [8].

Events and Behaviors
Reactive programming languages provide (reactive) values and (reactive) operators. The reactive values are events

and behaviors.

Events
An event is a value that represents an infinite stream of changes. This value emits change events which can carry
a value every time a change happens. In contrast to a behavior (explained below) the event steam does not hold
a value.

Behavior
A behavior represents a value which changes over time [19]. In general it represents a functional dependency
(the behavior expression) over other behaviors. Its value is obtained by evaluating the behavior expression. Some
reactive programming languages use the name signal instead of the name behavior.

Most reactive programming languages offer events and behaviors. A reason why some languages only offer behaviors
is that they can be implemented as a generalization of events [42, 14]. In these languages a developer can consider a
behavior as an event that holds a value.

When describing reactive programming most concepts work in the same way for behaviors and events. Furthermore,
languages which support both usually provide operators to change an event into a behavior and the other way round.
Therefore, we will use the term behavior in this thesis to describe behaviors and events.

Reactive Operators
Reactive programming language operators work on events and behaviors. These operators can transform or combine

behaviors into a new behavior. Which operators a reactive programming language provides, differs between languages.
However, there is usually an operator to transform a behavior (map), an operator to combine several behaviors into
one behavior (merge) and an operator which works with a state (fold). As they are representatives of most reactive
programming languages, we explain them here.

map
The map operator applies a function f to a behavior b. In this process it creates a new behavior and the value of
this new behavior is the function f applied to the value of behavior b.
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Figure 1: The dependency graph for the Reactive Ruby code in listing 2

merge
The merge operator combines two behaviors into a new behavior. The value of the new behavior is the value of
the behavior which most recently changed.

fold
The fold operator on the behavior b takes a function f and a value v. It creates a new behavior bnew. The initial
value of bnew is v. Whenever the value of b changes, the value of bnew changes to f(old value of bnew, value of b).
In an informal description, the value of bnew is f applied to the old value of bnew and the value of b.

2.2 Dependency Graph

A reactive programming language needs to handle dependencies between behaviors. This is necessary since the runtime
system needs to update dependent behaviors when the value of a behavior changes. In addition, behaviors represent
functional dependencies over other behaviors and form a dependency graph by themselves. On the one hand this graph
is a useful tool to visualize the structure of a reactive application. On the other hand it is central data structure used by
many reactive programming languages.

In the dependency graph, nodes represent behaviors. The edges between nodes represent dependencies. An edge that
goes from a node ni to a node nj means that when the behavior ni changes, the reactive programming language needs to
recalculate the behavior nj. Some terminology which is used throughout this thesis for this structure is: An edge from a
node ni to a node nj, means that behavior nj depends on the behavior ni. Furthermore, node ni is a predecessor of node nj
and node nj is a successor of node ni.

Figure 1 shows the dependency graph for the small Reactive Ruby code in listing 2. Node c depends on node a. Node
d depends on nodes a and b. When behavior a changes, behaviors c and d need to recalculate their values. If behavior b
changes, behavior d needs to recalculate its value. In this dependency graph a triangle stands for a behavior source and
a circle stands for a non-source behavior.

a = source (1)
b = source (2)
c = a .map { |x| x * 2}
d = a . merge(b)

Listing 2: Reactive Ruby code which creates the dependency graph in figure 1.

2.3 Evaluation Model

In reactive programming languages there are two common ways to propagate changes. Changes can be propagated in a
push-based fashion or in a pull-based fashion [20].
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Push-based evaluation
In this evaluation model changes are pushed through the dependency graph. Whenever a leaf behavior changes,
it notifies dependent behaviors. This results in an update of the reachable closure [15]. This evaluation model is
in a way a data-driven evaluation model.

Pull-based evaluation
In this evaluation model, a behavior pulls the data from its predecessor nodes when it recomputes its value. This
process can trigger a recomputation in its predecessor node. This evaluation model is demand-driven.

Some languages use a combination of the push and pull model. However, most reactive programming languages
use the push model. This applies in particular to reactive programming languages that extend an imperative / object-
orientated language. Besides, if a reactive programming language uses a push-based or pull-based evaluation model, it
is possible to distinguish between a lazy and an eager evaluation.

Lazy evaluation
A reactive programming language that applies lazy evaluation only evaluates the behavior expression, when the
value of the behavior is needed. Concerning the code in listing 3 this means that if a.emit(2) changes the value of
behavior a to 2, the value of behavior c is updated to 2. The value of behavior b is not updated. This is because
the value of behavior b is not used whereas the value behavior c is used. Whenever c changes, the new value gets
printed, therefore it is used.

Eager evaluation
A reactive programming language that applies eager evaluation always executes the behavior expression when a
predecessor behavior changes. In listing 3, when the value of a changes to 2, the values of behaviors b and c
change to 2.

a = source (1)
b = a .map {|a| a}
c = a .map {|a| a}
c . onChange {|x| put x }
a . emit (2)

Listing 3: Reactive Ruby example to demonstrate the difference between eager and lazy evaluation.

2.4 Glitches and Glitch Freedom

A glitch in a reactive programming language means that a behavior has a temporary inconsistent value during a propa-
gation turn. This can happen if a behavior executes its expression before all predecessor behaviors are updated.

We consider the reactive application in listing 4 and the dependency graph for this application in figure 2. In this
example, behaviors b and c should always have the value of behavior a. The value of behavior d should always be twice
the value of behavior a.

A glitch can happen in the following way:

1. The instruction a.emit(2) changes the value of the behavior a to 2. Then behavior a notifies behavior b.

2. Behavior b recalculates its value. The value of the behavior b is now 2. Behavior b then notifies behavior d that it
has changed.

3. Behavior d recalculates its value which gets printed. At this point, the value of behavior b is 2, but the value of
behavior c is still 1. Therefore, the new value of d is 3. Behavior d is in a temporarily wrong state which means
that a glitch has occurred.

4. Behavior a notifies behavior c that it has changed.

5. Behavior c recalculates its value. The new value of behavior c is 2. Behavior c notifies behavior d that it has
changed.

6. Behavior d recalculates its value again. Hereafter, behavior d has the correct value of 4. The correct value is
printed.
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Figure 2: A dependency graph with a propagation order that causes a glitch

a = source (1)
b = a .map {|a| a}
c = a .map {|a| a}
d = b .map( c ) {|b , c| b + c}
d . onChange {|x| puts x}
a . emit (2)

Listing 4: Reactive code which demonstrates how a glitch can occur.

Not all reactive programming languages are glitch-free. In a local setting, a common way to achieve glitch freedom is
a propagation algorithm that uses a topologically ordered dependency graph [8]. Glitch freedom in a distributed setting
is more complex, but also possible [15].

2.5 Static and Dynamic Dependencies

Reactive programming languages can have dynamic or static dependencies or both.

Static Dependencies
A reactive programming language has static dependencies if existing dependencies do not change during runtime. The

only changes in the dependency graph are the insertion of new nodes and the connection of these new nodes with the
dependency graph. The language adds new nodes when it creates new behaviors. That means the language adds no new
edges between already existing nodes and it does not remove edges from the graph.

The implementation of a glitch-free propagation algorithm for a reactive programming language with static dependen-
cies is simpler than for one with dynamic dependencies. Furthermore, static dependencies allow for optimization which
are not possible in a language with dynamic dependencies. A popular reactive programming language that has only static
dependencies is ELM [14].

In listing 5, the first part shows language features which create static dependencies. In this example, the operators
map and filter create nodes which incoming edges will never change.

Dynamic Dependencies
In a reactive programming language with dynamic dependencies the structure of the dependency graph can change

during runtime. During runtime, instructions can remove and add edges of existing nodes. Higher order reactives or
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#s t a t i c
s = source (1)
m = s .map { |x| x }
f = m. f i l t e r { |x| x > 2 }

#dynamic
s1 = source (1)
s2 = source (2)
bs = source ( t rue )
expr = behavior {

i f ( bs )
s1

e l s e
s2

}

Listing 5: A reactive programming application. The first part shows reactive operators which create static dependecies.
The second part creates dynamic dependencies.

Change of bs to false m

f

s bs

expr

s2s1

m

f

s bs

expr

s2s1

Figure 3: Two dependency graphs: the left one is static and the right one is dynamic.

behavior expressions with dynamic dependency discovery introduce dynamic changes. For example, Flapjax [34] is a
reactive programming language with dynamic dependencies.

Let us consider the conditional behavior expression expr in listing 5. The node expr initially depends on bs and s1.
When the value of bs changes to false, expr depends on bs and s2. Therefore, the edge from s1 to expr is removed and
the edge from s2 to expr is added. Figure 3 visualizes the change of the dependencies of node expr.

2.6 Lifting

Lifting is the technique of applying a function which is defined for non-reactive values to a behavior. For example, the
function + does not work on behaviors even if the behaviors contain numbers as their values. To achieve that, the
function + must be lifted. Bainomugisha et al. [8] classify lifting into implicit lifting, explicit lifting and manual lifting.

Implicit lifting
Implicit lifting could also be called automatic lifting. A language that applies implicit lifting lifts a function which
cannot work on behaviors if it is applied to a behavior. Now it can operate on these behaviors.

Explicit lifting
A language that applies explicit lifting provides the developer with operators to lift functions. The developer can
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use these operators to apply non-reactive functions to behaviors. Moreover, languages which use explicit lifting
often provide a set of standard functions which are already lifted [8].

Manual lifting
In a language that uses manual lifting, the developer needs to lift a function manually for working with behaviors.
The difference to explicit lifting is that the language does not provide operators to lift functions. Instead, the
developer needs to access the current value of a behavior manually. Then he can apply a function to that value.

2.7 Existing Languages

In the following, we describe some popular (functional) reactive programming languages and summarize some important
properties of them.

Fran
Fran [19] was developed to simplify the programming of GUI applications. Elliott Conal, Fran’s developer, has given

the first description of FRP. Elliott introduced behaviors and events. Fran’s initial version uses a pull-driven evaluation
model and the user needs to perform explicit lifting. Unfortunately, the initial implementation suffers from space and
time leaks. This means that the memory can grow unexpectedly (space leak) and the computing time can unexpectedly
become arbitrarily long (time leak). The language received an update [20] and now applies a push and pull evaluation
model.

ELM
ElM is a FRP language which targets the development of GUIs for web applications [14]. ELM is a purely functional

language and only offers signals. Its syntax guarantees that no higher order signals are created [14]. Therefore, its has
static dependencies. For the propagation of changes it uses a push-based evaluation. This allows treating signals in ELM
like events.

ELM introduced asynchronous signals, which allow asynchronous computation of signals [14]. ELM handles asyn-
chronous signals in the way that they are represented by two nodes in the dependency graph. The first node represents
a sink in the dependency graph. This node depends on all nodes the asynchronous signal depends on. The second node
is a source node in the dependency graph which emits a change event when the asynchronous signal finishes its reeval-
uation. All nodes that depend on the asynchronous signal depend on the source node. In summary, using this technique
the propagation algorithm does not need to have any special knowledge about asynchronous nodes.

ELM uses a global event dispatcher for the event propagation. When the dispatcher starts the event propagation, ELM
evaluates its code in two stages. In the first stage, ELM evaluates the non-reactive code. In the second stage, it evaluates
signals in a push-based fashion. Like many other FRP languages, ELM uses a direct acyclic graph for the propagation.
There is a difference to most other propagation algorithms. When a source node changes, ELM sends a change event
while at the same time all other source nodes send a noChange event.

Scala.React
Scala.React [30] is a reactive programming language and supports events and signals which are first-class values in

Scala.React. It is implemented as a Scala library.
Besides the typical composition functions like merge and filter, Scala.React also offers a data flow domain-specific

language (DSL). This DSL allows the developer to build a state machine over events.
Scala.React has a glitch-free propagation algorithm which uses a push-based evaluation model as it is common for

reactive programming languages which extend object-oriented languages. A central manger controls the propagation
algorithm which uses a topologically ordered dependency graph to guarantee its glitch-freedom. In contrast to other
propagation algorithms, Scala.React distinguishes between strict and lazy nodes. During propagation, a strict node is
updated even if nobody is interested in the node. A lazy node is only updated if someone is interested in that node.
In other words, it applies a mix between eager and lazy evaluation. In addition, the propagation algorithm can handle
dynamic changes in the dependency graph. This is important since Scala.React allows creating signals via signal
expressions which use dynamic dependency discovery. Therefore, its dependency graph can change dynamically e.g.
if a signal uses the expression {a() then b() else c()}.

Flapjax
Flapjax [34] is a FRP language which compiles to JavaScript. Alternatively, Flapjax can directly be used as a library in

JavaScript.
Flapjax supports event streams and behaviors and both are first-class values. Besides the typical functions like for

example lift and fold, Flapjax provides methods to access DOM elements in a FRP style. In addition, Flapjax supports
higher order FRP. Unfortunately, higher order FRP in Flapjax can cause memory leaks [30].
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Flapjax has a glitch-free propagation algorithm that can handle dynamic changes in the dependency graph. For that
it uses a topologically ordered dependency graph. Moreover, the propagation algorithm uses a push-based evaluation
strategy. A central manager performs the propagation.

Rx
Rx [3] is a reactive programming language which was initially developed for .NET by Microsoft. A number of other

languages adopted the ideas and concepts behind Rx.NET. Among others, a port of Rx exists for the languages Scala, Java
and JavaScript.

Rx extends a language with an Observable which represent a data stream and offers beside event like properties,
functionality for error handling and ending of event streams.

The propagation algorithm of Rx uses a push-base evaluation. In addition, it supports asynchronous computation.
Unfortunately, it does not offer a glitch-free propagation by default.

REScala
REScala [4] is a library which extends Scala with reactive programming. It embraces ideas from classical FRP as well

as from event-driven programming [37]. The language offers events and signals. Besides classical operators like map
REScala offers signal expressions.

REScala has a glitch-free propagation algorithm which is evaluated in a push-based fashion. In contrast to other
reactive programming languages, it also provides a glitch-free propagation algorithm for a distributed setting [36].

In an empirical study, Salvaneschi et al. provided evidence that it is easier to understand reactive applications written
in REScala then reactive applications written in an object-oriented style [36].

Despite covering important related work this list of reactive programming languages is by no means complete. Some
further notable mentions will follow below. Real-Time FRP (RT-FRP) [41] is a statically-typed FRP language. It adds
guarantees regarding the execution time. For that it uses only a subset of the FRP expressibility.

Event-driven FRP (ED-FRP) [42] is built on the ideas of RT-FRP. ED-FRP is a FRP language which is used to program
robots. It also restricts the expressibility of FRP to allow efficient computation. Among others, it does not allow higher
order behaviors. ED-FRP is compiled into a subset of the c language and the compiler performs some static optimizations
to increase the performance.
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3 Graal and Truffle

This chapter provides background information about the Graal JIT compiler and the Truffle language implementation
framework [44, 43, 16]. In this chapter the focus is more on Truffle than on Graal as the Reactive Ruby runtime system
developed in this thesis does not directly interact with Graal. However, the way Graal works directly influences the
performance of a language which is implemented in Truffle.

3.1 Graal

Graal VM extends the Java HotSpot VM with a speculative JIT compiler. Besides providing a basis for language develop-
ment, Graal VM can be used to develop static analyses. In this thesis we use Graal as a JIT compiler. For that reason, the
rest of the chapter only describes Graal features which are important in language development.

The Graal JIT compiler is written in Java. One of the main goals of Graal is to provide an aggressive JIT compiler. In
this context, aggressive means that the compiler creates a machine code which is highly specialized. Such optimizations
come at the cost of Graal having to deoptimize the JIT compiled code sometimes.

Figure 4 shows the architecture of a system that works with Graal and Truffle. Graal with the Hotspot VM consti-
tutes the first layer above the operation system. The next layer is the guest language VM, which is in this thesis the
Reactive Ruby VM. The guest language VM uses the Truffle language implementation framework for its implementation.
Applications written in the guest language build the last layer.

The Graal VM and the guest language VM work closely together. As the Graal VM is written in Java, it allows the
Truffle language framework an easy access and to control features of the Graal VM. Among others, Truffle and the guest
language VM can influence the JIT compiler of Graal. In addition, the guest language VM can define when Graal needs
to deoptimized parts of the JIT-compiled code.

This layered approach has the advantage that the guest language VM can use the existing benefits from the Java
VM. Among others, the guest language VM can use features like garbage collection, threads and a memory model. For
that reason, the guest language developer can focus on the language semantics and does not need to implement all VM
features.

3.1.1 Speculative Optimization and Deoptimization

Let us consider the Ruby source code in listing 6 as an example for speculative optimization and deoptimization. This
code assigns a value to the local variables a and b. After that, it adds a and b together.

In general, when the interpreter working with Graal executes an application it collects profiling information. After
collecting this profiling information, Graal uses this information for its speculative optimizations.

Let us assume that the profiling information for method m is that every time the interpreter executes m, the type of
a and b is integer. This information suggests the speculation that the type of a and b is always integer. Then the JIT
compiler can compile a fast specialized version of m in which a + b only works for the type integer. In summary, Graal
performed a speculative optimization for the method m.

There is obviously no guarantee that the speculation of a and b having the type integer will always hold. In case that
the type of a or b change, e.g., to double, the optimized code of the method m is not able to calculate the correct result.
In particular, the first two instructions (a = magicallyGetA() and a = magicallyGetB()) can still work. However, the
compiled code e.g., will contain a guard in front of the code of the instruction a + b. This guard ensures, that the type is
integer and will trigger deoptimization if the type is not integer. In the running example, Graal invalidates the code for
m and continues the execution of m in the interpreter.

Deoptimization is the process of invalidating the optimized compiled code and continuing the execution in the inter-
preter. This process is complex because JIT compiled code can change the state of an application. In the example, the
execution of magicallyGetA() or magicallyGetB() may change the state of the application (have side effects). Therefore,
when Graal switches the execution from the compiled code to the interpreter it cannot just reexecute the method m in
the interpreter. Instead, it needs to continue the execution in the interpreter after it has read the value of a and b and
before a + b fails. For that, Graal needs to reconstruct the program state so that it can continue the execution of method
m in the interpreter. Therefore, the optimized code saves meta information which allow Graal this reconstruction. The
name of these meta information in Graal is frame state. For more information [16].

def m()
a = magical lyGetA ()
b = magical lyGetB ()
re turn a + b

end

Listing 6: Ruby code to demonstrate optimization and deoptimization in Graal.
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Figure 4: System structure of a runtime system implementation in Truffle which is managed by Graal.
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3.2 Truffle

Truffle is a framework to develop languages which support speculative optimization. It is coupled with Graal and uses
the possibilities Graal offers to control the compilation process.

Languages which are implemented with Truffle are implemented as an AST interpreter. AST nodes implement the
semantics of the language. Specifically in Truffle several AST represent the application and the methods. Every AST has
a root node with an execution method, which is the starting point of the interpretation of this AST. Moreover, all nodes
have an arbitrary number of nodes as child nodes. Like the root nodes all other nodes have execution methods. The
AST is interpreted by the execution of the execution method which executes the execution method on some or all
child nodes and so on [44].

In general, AST interpreters are considered to be slow [44]. This is one of the reasons why the Java VM uses a byte
code interpreter. However, Truffle uses self-optimization of the AST and partial evaluation to increase the performance
of the implemented AST interpreter. Both techniques are explained later.

The AST representing the application is created from the source code. Initially, this AST represents the code in its
general form, the AST is uninitialized. That means it does not contain any speculative optimizations, e.g., the AST of
a dynamically-typed language does not contain any type information. During interpretation Truffle rewrites the AST,
it replaces uninitialized nodes with specialized nodes (self-optimization). When the AST reaches a stable state, Truffle
applies partial evaluation to the stable AST. Among others, partial evaluation removes the calls between nodes in the
AST.
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Figure 5, based on [28], gives an overview of how Truffle works. It shows the process of rewriting the AST to a
specialized AST based on type information. As an example, the expression a + b can create an AST like the one in figure
5. The two nodes in the bottom read the variables a and b and the top nodes calculate the addition.

The possible types are integer, double, string and generic. The double type includes the integer type and the generic
type can handle all types.

In figure 5 the AST starts in the uninitialized state. The u in the nodes stands for uninitialized. During the interpre-
tation Truffle specializes the AST based on collected profiler information. Here the AST specializes in an AST where all
types are integer. That means the uninitialized nodes that read the values of a and b are replaced by specialized integer
read nodes. In addition, the uninitialized + node is replaced by an integer addition node.

When the AST reaches a stable state, Truffle may trigger the JIT compilation process. An AST is in a stable state if it
has not changed for a predefined number of executions. In more detail, the following happens if Truffle triggers the JIT
compilation process: First, Truffle performs optimizations on the AST and creates an intermediate representation. For
that, Truffle performs partial evaluation on the AST which is explained in more detail in section 3.2.5. Most notable,
partial evaluation removes the calls between nodes in the AST. After that, Truffle hands the IR of the optimized AST to
Graal. Then Graal performs optimization on the IR and JIT compiles it. In summary, Truffle performs optimizations on
the AST level and creates an IR. Then Graal performs optimization on the IR and JIT compilation.

In figure 5, Graal JIT compiled the expression a + b with the speculation that the type of a and b is integer. This
code is efficient, however, it cannot handle other types. Graal triggers deoptimization when e.g., the type of b becomes
double.

Figure 6 visualizes the process of deoptimization and afterwards the JIT compilation of generalized AST. In detail, first
the deoptimization of the compiled code happens, e.g., because the guard which ensures that b is integer fails. After that,
Truffle continues the execution in the AST. At this point the AST is still in a specialized state, all nodes are specialized for
the type integer. Since the speculation that b is integer is wrong, Truffle rewrites the nodes b and + into a more general
node which can handle numbers of type double (the double node can handle integers). After this generalization, when
the AST again reaches a stable state, Truffle may trigger JIT compilation.

The process of rewriting the AST, based on collected runtime information, into a more specialized AST is named
self-optimization.

3.2.1 Node Rewriting

During the interpretation a node can replace itself and its children with new nodes. These node replacements allow a
local specialization and generalization of an AST. For example a node that represents an addition can specialize into an
integer addition node. Later, the integer addition node could be generalized into a double addition node.

Nodes that support specialization have several states which are implemented in different nodes. These nodes are
an uninitialized node, multiple specialized nodes and the generic node. The box node type transitions in figure 5 shows
these nodes for a node that performs type specializations, e.g., the + node. This node has an uninitialized node, three
specialized nodes for the type integer, double and string and the generic node. These three types of nodes which together
implement the node semantics and its local optimizations do the following: The uninitialized node is the state a node has
had before it was executed the first time. When the uninitialized node is executed, it is rewritten into a specialized node
that can handle the input (node specialization). If no specialized node can handle the input, it is rewritten into the generic
node. The specialized nodes provide a fast implementation for a subset of the node’s semantics. When a specialized node
is executed, it handles the input if possible. If it cannot handle the input, it is rewritten into another more general
specialized node or into the generic node (node generalization). The generic node provides an implementation of the
node that can handle all valid inputs.

For the node rewrites the developer needs to ensure the following properties.
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Completeness
Specialized nodes may only work on a subset of the generic nodes semantics. However, they must provide rewrites
to a generic node which can handle the whole semantics, or they must be able to redirect the execution to a node,
which can handle the whole semantics.

Finiteness
The number of times a node is rewritten must be finite. That means that cycles in the node replacement are not
allowed. At some point, the node must be rewritten into the generic node which can handle the whole semantics.

Locality
Node rewritings are only allowed locally. That means when a node is rewritten, the rewriting may only affect this
node and its child nodes.

3.2.2 Inlining and Tree Cloning

A problem with collecting profiling information at runtime is pollution of feedback. This can happen when several call
sites call a method with different inputs [44]. A specialized method needs to be general enough to work for all call sites.
For example, the non-primitive type specialization of a method in Java can suffer if different call sites call this method
[45].

To reduce the effect of pollution of feedback, Truffle applies a technique that is called tree cloning [44]. In Truffle, all
nodes, and therefore also the tree which represents a method, can clone themselves. If a method call site is hot, Truffle
can clone the method which the call site frequently calls. Then the hot call site works with a clone of the method. When
Truffle clones a method the AST of the cloned method is set into its initial state. That technique allows the specialization
of the method for a certain call site. When Truffle performs inlining at that call site, it inlines the cloned method.

The cloning and inlining in Truffle work at the AST level. This means that when Truffle performs inlining, it copies the
whole tree of the method into the call site. The cloning and inlining happens before Graal does further optimizations.
The advantage is that Graal is able to apply optimizations to one method which contains the inlined methods instead of
several small methods. Therefore, Graal can apply certain optimization techniques to the method of the call site as well
as to all inlined methods, even if these techniques would normally only work for the method of the call site.

The cloning and copying of methods increases the size of the AST. Therefore, the Truffle framework uses heuristics
to detect, where it is beneficial to clone a method. The language developer can control if Truffle should never/some-
times/always clone methods. For example, the language designer could define that Truffle always clones and inlines the
foreach method of a collection library.

3.2.3 Assumptions

As we already discussed, deoptimization is the process of invalidating compiled code and resuming the execution in
the interpreter. Graal and Truffle allow two ways to trigger deoptimization. The compiled code can explicitly trigger
deoptimization by a call to the deoptimization method. The other way to trigger deoptimization are assumptions.

An assumption in Truffle is a global flag. Initially, the flag is valid and it can be set to invalid exactly once. Nodes
in the AST can reference an assumption and check if this assumption is valid. When an assumption is set to invalid,
compiled code which depends on that assumption becomes invalid. Therefore, Graal triggers deoptimization the next
time it executes the compiled code.

This feature is important, for example, for the implementation of a function cache in a language which allows a
function redefinition. In this example, assumptions provide a way, to invalidate the compiled code when the cached
function changes. Therefore, the compiled code does not need to check, if the cached function is valid every time it is
executed. This approach increases the performance, since usually a function does not get redefined that often.

3.2.4 Object Storage Model

Truffle provides an object storage model (OSM)[43]. For a more detailed explanation see the original Truffle OSM paper
[43].

The OSM can be used to implement objects in Truffle. In more detail, the OSM provides space where the object can
save primitives values and object references. In addition, it provides the functionality to allocate more space for attributes
if necessary. Furthermore, the OSM manages the mapping from attribute names to locations where the attributes are
saved. Moreover, it provides the functionally for a fast read and write access to an attribute.
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3.2.5 Partial Evaluation

Truffle applies partial evaluation to an AST when that tree reaches a stable state. This ia a condition that holds when
Truffle has executed the AST for a number of times without a change.

The partial evaluation assumes that the AST will not change. This allows replacing the virtual calls with direct calls
which call the child nodes in the execute methods . After that, the partial evaluation inlines all these direct calls. This
process creates a unit which represents the stable AST. In other words, the process removes the edges in the AST.

Another advantage of the assumption of the AST being stable is that many values in the AST become constant [44].
This allows replacing a variable with an actual value during partial evaluation.

In general, an AST contains nodes which trigger node replacement. Obviously, rewriting is not allowed since partial
evaluation assumes a stable AST. Therefore, during partial evaluation all rewrite instructions are replaced by deoptimiza-
tion points.

The result of the partial evaluation is an intermediate representation (IR). This IR represents the semantics of the AST.
Then Truffle gives the IR to Graal. After that, Graal performs further optimization and compiles the IR.
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4 Reactive Ruby

This chapter describes Reactive Ruby and its implementation. We initially present a brief overview of Reactive Ruby in a
nutshell, then we describe the propagation algorithm. After that, we describe the implementation of Reactive Ruby and
some optimizations.

4.1 Design of Reactive Ruby

Reactive Ruby extends the Truffle Ruby language with abstractions for reactive programming. Reactive Ruby provides
behaviors as well as the typical reactive programming operators on behaviors.

The reactive programming part of Reactive Ruby is integrated into Ruby’s object-oriented programming model. Behav-
iors are first-class values, can be passed as parameters and returned by functions. Objects can store behaviors in fields.
Also, Reactive Ruby supports the creation of behaviors at runtime.

4.1.1 Reactive Ruby in a Nutshell

We present the design of Reactive Ruby making use of some examples. The example below prints the current time every
second. For that, timeB(1) provides a behavior that represents the current time, which gets updated every second. In
addition, we need to register a method to the behavior which prints the current time whenever the behavior changes.

time = timeB (1)
time . onChange { |x| puts x}

Lets us consider another typical reactive example, namely printing the current position of the mouse. Here, mouseB()
provides a behavior which represents the mouse. This behavior contains more information than the position of the
mouse. Therefore, mouse.map { |m| [m.xpos, m.ypos] } creates a new behavior which contains the position of the
mouse, which gets printed whenever it changes.

mouse = mouseB ()
mousePos = mouse .map { |m| [m. xpos , m. ypos ] }
mousePos . onChange { |pos| puts pos}

The next example adds up all even numbers. In this example, method rangeB(1,100) creates a behavior which initially
holds the value 1 and then stepwise increases until it holds the value 100. The range.filter creates behavior even which
holds the last even value of range. Then range.fold produces behavior sum that adds up over all values of the behavior
even. After that, range.map combines behaviors range and behavior sum. The value of this behavior is printed whenever
it changes.

range = rangeB (1 ,100)

even = range . f i l t e r (0) { |x|
x . t o _ i % 2 == 0

}

sum = even . f o ld ( 0 ) { |acc , va l |
acc + va l

}

combine = range .map(sum) { |x , y| [x , y ] }

combine . onChange {|x| puts " sum: #{x} " }

The following example examines if the user inputs for a mailing list registration form are valid. It checks if the user
provides a valid email address and it ensures that the user selects at least one mailing list. Lastly, it makes sure that the
user selects between immediate notifications or daily summaries.

In this example, the code initially creates the behaviors which represent different form elements. Behavior mail
represents the provided email address and selectableLists is an array of behaviors which represent the selectable mailing
lists. In addition, immediatUpdates and dailyUpdates are behaviors which contain the information if the user selected
immediate or daily updates. After that, the code checks if the user provides a valid input. For that, the code creates
the behaviors checkEmail, checkListSelected and checkUpdate, which are true if their representative input is valid.
Behavior checkEmail uses the method checkMail to validate the email address. The next behavior checkListSelected
needs to check that the user has selected at least one mailing list. To manage that, it uses the atLestOneListSelctedB
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helper method. This method creates a new behavior which combines the behaviors in lists and makes sure that at least
one of them represents the value true. The last behavior checkUpdate combines the behaviors immediateUpdates and
dailyUpdates and checks that the user selected exactly one behavior.

The last line in the code calls the method visualizeChecks which visualizes the checks. This method, e.g., displays a
green OK symbol when the check is valid, and a red cross if it is not valid besides the email address.

#h e l p e r method
def a tLeas tOneL i s tSe l c t edB ( l i s t s )

return l i s t s . f i r s t .map(* l i s t s . drop (1)) { |* args |
#args r e p r e s e n t s the c u r r e n t va lue o f a l l b ehav i o r s in l i s t s
#i n j e c t i s Rubys f o l d method
args . i n j e c t { |acc , x| acc || x }

}
end

#input b ehav i o r s
mail = t e x t f i e l d ( " inputEMail " )
s e l e c t a b l e L i s t s = g e t S e l e c t a b l e M a i l i n g L i s t ( )
immediateUpdates = check ( " imUpdate " )
da i lyUpdates = check ( " dayUpdate " )

#check
checkEmail = mail .map {|m| checkMail (m)}
c h e c k L i s t S e l e c t e d = atLeas tOneL i s tSe l c t edB ( s e l e c t a b l e L i s t s )
checkUpdate = immediatUpdeas .map( dai lyUpdates ) {| imUp , dayUp| imUp ^ dayUp}

#v i s u a l i z e
v i sua l i z eCheck s ( checkEmail , checkL i s tSe l e c t ed , checkUpdate )

4.1.2 Behaviors and Sources

Reactive Ruby’s reactive values include behaviors to express functional dependencies and source behaviors (i.e., sources)
to trigger changes in the reactive system.

Source
The source behavior is the starting point of a reactive computation. A source behavior wraps a normal Ruby value.

Then, a developer can use this source to create behaviors which will be updated whenever this source changes. In
addition, the imperative code can change the value of a source behavior.

Behavior
A behavior describes a functional dependency, the behavior expression, among other behaviors. It represents a value

which changes over time. For convenience, we use the value of a behavior for the value which is currently represented
by the behavior. The developer can register handlers on the behavior which notify the imperative code of any changes.
The imperative code can read the value which the behavior represents. However, it cannot change the value of a behavior.

The following example demonstrates sources and behaviors. The code snippet initially creates two sources a and b
which represent the values 1 and 2. After that, it creates a behavior c which adds the behaviors a and b together. The
operator emit changes the value of source a from imperative code. As behavior c is functionally dependent on a and b,
it is updated to 7. The imperative code cannot change the value of c.

a = source (1)
b = source (2)
c = a .map(b) { |a , b| a + b }
a . emit (5) # change the va lue o f a i m p e r a t i v e l y
# va lue o f c i s 7
# c . emit (1) c r e a t e s a runtime e r r o r
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4.1.3 Operators

Reactive Ruby provides operators to transform a behavior, to combine behaviors and to use the past values of a behavior.

map() {|val| ... } -> Behavior
The map operator on a behavior b consumes a Ruby block f ({|val| ... }). It creates a new behavior bnew, which
represents f applied to the value of b.

The example below applies the map operator to the behavior source. It creates the new behavior twice. The value
of behavior twice is always twice the value of source.

source = source (1)
twice = source .map { |x| x * 2 }
source . emit (2) # −> t w i c e . now = 4
source . emit (4) # −> t w i c e . now = 8

map(b1,...,bn) {|v0,v1,...,vn| ...} -> Behavior
This map operator is a generalization of the previous case. The map operator on a behavior b takes an arbitrary
number of behaviors b1, ..., bn and a Ruby block f ({|v0,v1,...,vn| ...}) as arguments. It creates a new behavior
bnew by applying f to the values carried by b and b1, ..., bn.

In the example, below the map operator combines behaviors fname and sname in the new behavior fullName.
This behavior represents the functional dependency { |vn, nn| nn + " " + vn } where vn and nn are the values
of the behaviors fname and sname. The block creates a string by concatenating the values of the behaviors fname
and sname, which is initially Hans Peter. In other words, behavior fullName represents the full name if fname
represents the first name and sname represent the surname.

fname = source ( " Hans " )
sname = source ( " Pe ter " )
fullName = vname .map(nname) { |vn , nn| nn + " " + vn }
puts fullName . now # Hans P e t e r
sname . emit ( " Maier " )
puts fullName . now # Hans Maier

fold(init) {|acc,v| ... } -> Behavior
The fold operator on a behavior b takes a Ruby value init and a Ruby block f ({|acc,v| ... }) as its arguments.
It creates a behavior bnew, which depends on itself and the behavior b. Initial bnew represents the Ruby value init.
Whenever behavior b changes, fold applies f to the current value of bnew and the value of b.

In the example below, the fold operator creates the sum over all values of the number behavior.

number = source (0)
sum = number . f o ld (0) { | oldValue , num| oldValue + num }
puts sum . now # 0
number . emit (1) # sum . now = 1
number . emit (4) # sum . now = 5

filter(init) {|v| ... } -> Behavior
The filter operator takes as arguments a Ruby value init and a Ruby block f ({|v| ... }). It creates a behavior
bnew which filters out certain values of behavior b. Initially, the value of behavior bnew is init. Whenever b changes
and the function f evaluates to true for the value of b, the value of bnew gets updated to the value of b.

merge(b1,...,bn) -> Behavior
The merge operator on a behavior b takes an arbitrary number of behaviors b1, ..., bn as arguments. It creates
a new behavior bnew. The value of the new behavior bnew is initially the value of the behavior b. After the
initialization, the value of the behavior bnew is the value of the behavior which changed most recently. In the case
that during a propagation turn more than one predecessor behavior changes, the merge operator selects the value
of the behavior that has the left-most position in the argument list and also changes its value in this turn.

take(n) -> Behavior
The take operator on a behavior b takes a number n as a parameter. It creates a new behavior bnew. For the next
n changes of b the value of bnew is the value of b. After that, the value of bnew does not change anymore.
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skip(n,v) -> Behavior
The skip operator on a behavior b takes a number n and an initial value v as parameters. It creates a new
behavior bnew. The value of bnew is initially v. After the behavior b changed n times the value of bnew is always
equal to the value of b.

sampleOn(b1) -> Behavior
The sampleOn operator on a behavior b takes another behavior b1 as a parameter. It creates a new behavior bnew.
Whenever the value of b changes, the behavior bnew changes its value to the value of b1. When the value of b1
changes, the value of bnew does not change.

4.1.4 Behavior Expression

Behavior expressions are defined through the syntax behavior {behaviorexpr}, where behaviorexpr is a side
effect free Ruby block. A behavior expression creates a new behavior whose value depends on other behaviors
via behaviorexpr. That means that behaviorexpr is recomputed if a behavior that appears in the expression changes its
value. In the behaviorexpr, the value of a behavior is accessed via the operator value.

In the example below the behavior expression creates a behavior c whose value is the addition of a and b. The
behavior c accesses the values of a and b inside the behaviorexpr via the operator value.

a = source (0)
b = source (1)
c = behavior {

a . value + b . value
}

A behavior expression creates a behavior which statically depends on all behaviors in behaviorexpr. Section
4.7.1 explains how the system calculates the dependencies from the behaviorexpr and some limitations.

The following example shows a consequence of the static dependency discovery. In this example behavior d depends
on the behaviors a, b and c. Therefore, the value of d is reevaluated when behavior c changes. This is an unnecessary
reevaluation if the contraflow through the block is considered. Since the value of behavior a is true, the interpreter does
not execute the else branch.

a = source ( true )
b = source (0)
c = source (1)
d = behavior {

i f (a . value )
b . value

else
c . value

end
}

4.1.5 Integration with Imperative Code

Besides operators for composing behaviors, Reactive Ruby provides operators that allow the integration of reactive code
and imperative code.

emit(value)
The emit operator changes the value of a behavior source. The execution of the emit operator triggers the start
of a change propagation turn.

now()
The now operator returns the current value of a behavior or a source.

onChange() {|v| ... }
The onChange operator registers a Ruby block on the behavior. This Ruby block will be executed when the value
of the behavior changes. This operator is useful since the behavior expression should be side effect free.

remove(proc)
The remove operator removes the provided proc from a behavior if it is registered on the behavior.
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4.2 Propagation Algorithm

The runtime system of Reactive Ruby provides JIT compilation for the reactive code. Before it actually JIT compiles code,
it performs speculative optimization. The selection of the propagation algorithm highly influences how well Truffle’s
node rewriting can improve the performance of a reactive programming language. In general, Truffle allows local and
global optimizations. However, it accelerates if it can perform aggressive local optimization via node rewriting.

For example, after node rewriting the specialized AST for a chain of behaviors should contain almost no propagation-
handling code. In a chain, one behavior needs to notify exactly one other behavior after it changes. In addition, a node
does not need to perform a glitch free check. Therefore, after node rewriting the AST for this structure should not contain
a glitch-free check. In addition, the specialized node that notifies the next behavior in the chain should contain a direct
call to the method which handles this behavior. If that is the case, Graal can produce efficient JIT compiled code.

Most reactive languages which provide glitch-free propagation use a central manager which handles the propagation
and uses a topologically ordered dependency graph and a priority queue [30]. These kinds of propagation algorithms
are, however, not well-suited for the Reactive Ruby runtime system. This is the case since they are not well-suited
for local optimization because in them behaviors do not directly communicate with each other. Instead, behaviors
communicate with a central manager which controls the propagation for these behaviors. That increases the distance
between behaviors. Besides that behaviors do not directly communicate, there is a discrepancy between closeness in
the graph and execution order. If the graph contains a chain of behaviors, it is possible that these behaviors are not
reevaluated directly after each user. Therefore, we decided not to use a propagation algorithm which uses a central
manager.

Instead, the Reactive Ruby runtime system uses a modified version of the SID UP [15] algorithm, which was developed
for reactive programming in a distributed setting. In this context, communication with a central coordinator is expen-
sive. Therefore, behavior nodes are self-sufficient: they only communicate with their predecessors and successors in
the dependency graph. This characteristic is well-suited for a speculative optimization with Truffle because optimization
patterns only need to consider a behavior and its predecessor and successor behaviors. Therefore, an aggressive local
optimization is possible.

4.2.1 The Algorithm

The propagation algorithm has two main functionalities. It needs to handle the insertion of new nodes and it handles the
propagation of changes. The original SID UP algorithm can handle dynamic changes to the graph structure. In Reactive
Ruby the dependency graph does not change dynamically, this is why this part of the algorithm is left out.

The propagation algorithm stores the following information in the behavior nodes.

Source Node
A source node s stores an ID. The ID is a unique long value. It also stores all behaviors which depend on the source
node s.

Behavior Node
A behavior node b stores the ID of all source nodes si .. sj which can reach b. In addition, behavior b saves the
number of predecessors which each of the sources si .. sj can reach.

The left part of Figure 7 visualizes a dependency graph with the stored information. Every source has a unique
identification number. All behaviors save for each source that can reach them the number of predecessor nodes this
source can reach. Source 1 and source 2 can reach behavior a. Source 1 can reach a directly and via a’s predecessor b,
therefore a saves ID:1 ; 2. Source 2 can reach a via a’s predecessor b, therefore a additionally saves ID:2 ; 1. Source 1
and 2 both can reach b via exactly one predecessor, therefore b saves ID:1 ; 1 and ID:2 ; 1. Only source 2 can reach c
therefore c saves ID:2 ; 1.

Adding of New Nodes
When the runtime system creates a new behavior, it adds a new node to the dependency graph. The algorithm

distinguishes between the insertion of a source node and a behavior node.

New source node
The adding of a new source node is trivial. The system adds the new source node to the dependency graph. This
node has no edges and it gets the next free ID.

In the right part of figure 7 a new source is added (dashed triangle). The new source node gets the next free ID
which is in this case 3.

27



1 2

a
ID:1 ; 2
ID:2 ; 1 

b
ID:1 ; 1
ID:2 ; 1 

c
ID:2 ; 1 

1 2

a
ID:1 ; 2
ID:2 ; 1 

b
ID:1 ; 1
ID:2 ; 1 

c
ID:2 ; 1 

3

d
ID:1 ; 1 
ID:2 ; 2
ID:3 ; 1

Figure 7: Dependency graph which visualizes the information stored for the propagation algorithm.

New behavior node
Adding of a new behavior node bnew is more complex. When the runtime system creates behavior bnew, it adds
a new node to the dependency graph. All behaviors on which behavior bnew depends add an edge to the new
behavior. After that, behavior bnew calculates from which source and via how many predecessors it is reachable.
To do so, it iterates over all predecessors and collects all sources in a multi set. Then it counts the number of
occurrences for each source in the multi set and saves these numbers.

In the right part of figure 7 a new behavior is added (dashed circle d). Behavior d depends on behaviors 3, a
and c. It collects from predecessor 3 the information that it is reachable from source 3. Moreover, it collects from
predecessor a the information that it is reachable from source 1 and 2. Lastly, it collects from predecessor c the
information that it is reachable from source 2. This results in the multi set {3,1,2,2}. Therefore, d saves that
source 1 reaches two predecessors (ID:1 ; 2), source 2 reaches one predecessor (ID:2 ; 1) and source 3 reaches
one predecessor (ID:3 ; 1).

Propagation of Update Events
The propagation phase starts when the value of a source node changes. During a propagation phase no other source

node is allowed to change. The propagation phases must happen mutually exclusive. In addition, the algorithm always
processes exactly one node.

During a propagation phase, all nodes that are in the reachable closure of the changed source node are processed.
Each node in the graph counts the number of change events it receives during one propagation phase. The count is 0
at the beginning of a propagation phase. Moreover, each node has a boolean flag (changed) which indicates if the node
has changed. Initially, this flag is false. Figure 8 (change source node 1) visualizes the data stored at the beginning of a
propagation. In this figure all nodes have a count which is 0 and their changed flag is false. Furthermore, the nodes a, b
and d are in the reachable closure of source 1, which has changed.

The propagation phase starts when the changed source node starts to send out change events to all successor nodes.
Source 1 sends a change event to a (change event 1 -> a, figure 8) and to b (change event 1-> b, figure 8). The change
event that is propagated during a propagation phase contains the ID of the source node and the information whether the
node that sends the change event was changed in the current propagation phase. In addition, it contains the behavior
which changed most recently.

The remaining part describes the algorithm by explaining how a node handles an incoming change event:
During the propagation phase a node sets the changed flag to true when it receives a change event from a behavior whose
value changed. In figure 8 (change event 1->a) node a revives a change event from node 1, which changed its value this
turn. Therefore, node a sets the changed flag to true. Moreover, when a node receives a change event, it increments its
counter (count) by one. In Figure 8 (change event 1 -> a) node a receives a change event. Therefore, node a increases
the count value to 1.

After a node has received a change event, the node checks for the source in the change event the number of prede-
cessors via which this source can reach the node. If the number of received change events (count) is smaller than this
number, the node waits for further change events. Source 1 can reach node a in figure 8 (change event 1 -> a) via two
predecessors (ID:1 ; 2). The value of count for node a is 1, therefore it needs to wait for further change events. If the
value of count is equal to the number of predecessors the source can reach, the node can execute its behavior expressions.
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Figure 8: Dependency graph which shows the changes of stored information during the propagation of changes.
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Figure 9: The evolution of a dispatch chain for the add operation. See listing 7 for the code of this example

Depending on whether the changed flag is set, the behavior expression needs to be evaluated and a new behavior value is
saved. In figure 8 (change event 1 -> b) node b receives a change event and its count is equal to the number of relevant
predecessors. In addition, the changed flag is true therefore it executes its behavior expression. Figure 8 (change event
a-> d (a did not change)) illustrates the case of the count being equal to the number of predecessors the source can
reach and the changed flag being false. Therefore, d does not need to execute its expression.

After a node has received all change events for one turn and maybe executed its expression the behavior sends a
change event to all successor behaviors. The change event contains the information whether the behavior changed its
value. In addition, it contains the source, which triggered the change propagation. Moreover, the change event contains
the current behavior since it is the last behavior that changed. After that, the behavior sets the count to 0 and the changed
flag to false. In figure 8 (change Event a-> d (a did not change)) node a notifies d after it has received a change event
from 1 and b. The value of a did not change, therefore it sends the information that it has not changed to node d.

Correctness
The changed SID UP algorithm, as presented here, only works for reactive languages with static dependencies and

it must be guaranteed that in a propagation turn exactly one source was changed. The algorithm could probably be
modified in order to enable it to work with reactive languages which have dynamic dependencies.

As a consequence of the restrictions mentioned above, the check whether a node b receives n change events is equiva-
lent to the check of the SID UP algorithm. Here, n is the number of predecessors of b which are reachable by the current
source. That is because the SID UP algorithm checks every time it receives a change event for all predecessors which
are reachable by the source node if they have changed. It only receives a change event if one of its predecessors which
is reachable by the source was completely processed. A node changes exactly once. Therefore, a node is called n times
during a propagation turn.

4.3 Dispatch Chains and Inline Caches

A dispatch chain [33] allows for chaining different speculative optimizations. Dispatch chains are a common pattern in
self-optimizing AST interpreters [33]. The Truffle DSL [28] uses them to implement, among others, type specializations
of operators. We use dispatch chains to implement optimizations for reactive programming.

Before this section explains the dispatch chain in detail, it provides a short example of the evaluation of a dispatch
chain. The following example explains the evaluation of a dispatch chain from a fast speculative optimization to the
slower non-speculative optimized state. Obviously, for a real application it is desired that the dispatch chain does not
reach it generic state (end state).

1 + 3
4 + 3
3 + 3.4
" Hal lo " + " Peter "

Listing 7: Program which performs addition on different types to demonstrate the evolution of the dispatch chain.

Figure 9 visualizes a dispatch chain for a type speculation of the addition operator for the example code in listing 7.
Simplified, this dispatch chain handles all addition operators in the whole application. Before the interpreter executes
the program, the dispatch chain is in an initial state. During the execution of line 1, the dispatch chain adds a node (Add
Int) to handle the integer addition, which is a speculative optimization. The execution of line 2 is handled by this node
(Add Int). In line 3 the operator adds an integer and a double number together which the Add Int node cannot handle.
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Figure 10: Evaluation of an arbitrary dispatch chain.

Therefore, Truffle adds a new node (Add Double) to the dispatch chain which is able to perform the addition of doubles,
which is another speculative optimization. The dispatch chain is now able to perform the addition for the type int and
for the type double. The code in line 4 adds two strings. Neither the Add Int node nor the Add Double node can handle
the type string. The dispatch chain can add an Add String node which can handle the addition of strings. However,
the dispatch chain reached a predefined max length, therefore Truffle replaces the chain with one node (Add Generic)
which can handle the additions for all types. The Add Generic node replaced all speculative optimizations with a generic
implementation of the addition operator.

A more general explanation of the dispatch chain follows now. Figure 10 displays an initial dispatch chain and its
evolution. In general, a dispatch chain attempts to provide speculative optimizations for an operator. To allow for more
than one speculative optimization of the operator, the dispatch chain allows for chaining nodes. Each node provides
a speculative optimization and with each added node the dispatch chain provides speculative optimizations for more
inputs. However, with each node added the code size increases and the performance of some optimizations (nodes in the
back) decreases. Therefore, at some point when the dispatch chain gets too long, the whole dispatch chain is replaced
by one node which implements the semantics of the operators.

Now an explanation which focuses on the implementation follows. A dispatch chain contains a head node, which hides
changes inside the dispatch chain from the outside. When the system executes the head node, it calls its current child
node to handle the input. Initially, the child node is the Uninitialized node, which creates new nodes and inserts them in
the dispatch chain. The Uninitialized node performs all node rewrites which happen in the dispatch chain. Truffle never
compiles the Uninitialized node because it performs node rewrites, which are only allowed in the interpreter.

The first n times the Uninitialized node is executed, it creates specialized nodes which provide a speculative optimiza-
tion for the input that reaches the Uninitialized node. In figure 10, the first time the system executes the Uninitialized
node it creates the Specialized A node and the second time it creates the Specialized B node. The Uninitialized node
usually inserts the new specialized node as a child of the head node. In figure 10 the third chain the Specialized B node
is inserted before the Specialized A node.

The specialized nodes implement speculative optimizations and cannot handle all inputs. Therefore, they contain
checks which ensure that they can handle the provided input. In addition, specialized nodes can contain assumptions,
with whom the system can invalid a specialized node. When a specialized node is able to handle the current input, it
executes its implemented semantics. If it cannot handle the input, it redirects the execution to the next node (executes
the next node) in the dispatch chain.

When the dispatch chain gets too long (longer than a predefined number), the Uninitialized node replaces the whole
chain with a Generic node (the last dispatch chain in figure 10). This node is able to handle the whole semantics of the
operator. This Generic node is slower than the specialized implementations and it ideally is created as rarely as possible.

In general Truffle can trigger JIT compilation for each state of a dispatch chain. However, the specialized nodes are
usually significantly faster than the generic nodes. The concept that Truffle clones a method and copies it to a call site
before it inlines the methods (as explained in 3.2.2) helps to reduce the number of generic nodes in dispatch chains.

4.3.1 Inline Chaches

The Reactive Ruby runtime system uses the Polymorphic inline caches (PIC) [27], which Truffle Ruby provides. A PIC is
a technique to speed up method calls. For that it, saves previous called methods at the call site and contains direct call
to these methods. PIC can be implemented in the form of a dispatch chain and they play an important role to provide an
efficient runtime system. This is why they will be described in this section.

The Truffle Ruby runtime system distinguishes between normal method calls and Ruby block/proc/lambda calls. Reac-
tive Ruby uses Ruby methods to implement the propagation logic. Moreover, it uses Ruby blocks for the implementation
of the behavior expression. Therefore, the PIC for method calls and the PIC for block calls are important in the runtime
system.

As PIC can be implemented in a dispatch chain, we explain the PIC by describing the specialized and generic nodes.
In addition, we describe how these nodes work and we explain the uninitialized node.
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The dispatch chain which implements a PIC for a Ruby method has one specialized node. This node caches a method
and contains a direct call to that method. The generic node does a method lookup and then performs a normal call to
that method.

To be more precise, the Ruby PIC has some additional specialized nodes for corner cases. E.g., one corner case is a
method call to a non-Ruby method. These special cases are important for Ruby, but not for the reactive part. Therefore,
we will skip them here.

Cached Dispatch Node
The cached dispatch node (specialized node) stores a method and has DirectCallNode node for this method as a child.

The DirectCallNode is a Truffle API node and the Graal JIT compiler has special knowledge about this node. For this
node, Graal can perform inlining as well as call site sensible cloning of the call tree [1, 28].

In addition to the method, the node stores an assumption which invalidates the code when the method is changed. It
furthermore saves the class in which the method is implemented.

When the system executes the cached dispatch node for a method m, the node checks if the stored method is equal to
the method m. If this is the case, the cached dispatch node performs a direct call for the cached method. If it is not the
case, it redirects the execution to the next node in the dispatch chain.

Uncached Dispatch Node
This node is the generic node in the dispatch chain. It performs a method look up whenever it is called. For that,

it checks if the class of the object on which the method is called defines that method. If this is the case it loads that
method and calls this method. If this is not the case, it traverses all ancestors of the class until it finds the method. The
method look up requires runtime information and will not be JIT compiled. As a result, the uncached dispatch node is
slow compared to the cached dispatch node.

Unresolved Dispatch Node
The unresolved dispatch node (uninitialized node) creates cached dispatch nodes as long as the chain is shorter than

the max PIC chain length. To create a cached dispatch node, it performs a method look up as explained in the paragraph
above and creates the new node for this method. If the chain is too long, it replaces the dispatch chain with one uncached
dispatch node.

PIC for Ruby Blocks
Overall, the PIC for Ruby blocks work in the same way as the PIC for methods. The main implementation difference

is, that the generic node does not need to perform a method look up. The semantics of block and method calls differs,
therefore they both need different implementations. However, the implementation of the PIC for Ruby blocks is similar
to the PIC for methods. Therefore, we do not consider a further explanation to be beneficial here.

4.3.2 Use of Inline Caches in Reactive Ruby

Reactive Ruby neither performs explicit JIT compilation of the propagation logic nor explicitly merges chains of behaviors
into a single behavior. The implementation of Reactive Ruby uses PIC in the propagation algorithm. This use of PIC
together with node rewrites creates efficient code for the propagation logic. Furthermore, these both together enable
Truffle to generate compiled code for, e.g., chains of behaviors which does not contain calls and almost no propagation
logic.

It is not obvious how the implementation of the propagation of changes (section 4.6) enables merging of behaviors
during the propagation of changes. Therefore, we explain here how the PIC which are used in the propagation of changes,
enable Truffle to perform this operation.

Reactive Ruby uses a propagation algorithm in which every node locally performs the functionality to receive change
events, ensure glitch-freedom, reevaluate the behavior expression and notify successor nodes. Every behavior shares a
method which handles all the functionalities listed above. Figure 11 visualizes this method, for explanatory reasons we
name this method propagation method.

In Truffle, all methods are implemented as AST trees. Therefore, we use subtrees to describe a part of the AST of a
method which performs a certain task. The tree of the propagation method contains a subtree which processes the
incoming change events and checks if the behavior needs to wait for further change events to guarantee glitch freedom
(Glitch Freedom Logic). The second subtree (Reevaluate Behavior Expression) executes the behavior expression,
changes the behavior value and notifies handlers if necessary. The last subtree (Propagation Changes) sends out change
events to the successor nodes in the dependency graph.

We use PIC in the reevaluate behavior expression subtree and in the propagation changes subtree. The implemen-
tation uses inline caches for the execution of Ruby blocks, which are used by some behavior expressions (Reevaluate
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Figure 11: The AST of the propagation method which handles the propagation of changes in Reactive Ruby. The
nodes glitch freedom logic, reevaluation of the behavior expression and propagation changes represent sub-
trees of these AST.
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Figure 12: Chain of 3 behavior nodes with specialized PIC in the propagation code.

Behavior Expression subtree). In addition, it uses PIC to call the successor behaviors (Propagation Changes subtree),
which allows combining chains of behaviors.

Now we explain how PIC enables merging behaviors during propagation. Therefore, the propagation changes subtree
is interesting. Figure 12 visualizes a chain of three behaviors. In this chain the first two behaviors contain a PIC which
already has the specialized node DirectCallNode. This node caches the propagation method of the next behavior
and has a direct call to that method. This direct call allows Reactive Ruby to inline this method of the next behavior as
well as to clone it.

Inlining removes the call between behavior nodes during propagation. In other words it merges two behaviors during
propagation. However, the cloning of the propagation method is also very important for the following reason.
The propagation method provides an efficient optimization for, among others a behavior which is part of a chain
structure. However, initially all behaviors share the propagation method. Therefore, this method will likely be in
a generic state. When the method is cloned for the first behavior node in the chain structure, Truffle sets the cloned
method in its initial state and it can specialize for that call site (specialize for a chain structure). In figure 12 the cloned
propagation methods can specialize to a version which works well for a chain structure. In conclusion, the cloning
of the propagation method together with the optimization of these methods provides the speculative optimization of
the code.

After Truffle creates the direct calls, cloned the methods and optimized the cloned methods, it can inline the calls, and
then Graal can JIT compile it. After inlining, the chain of three behaviors looks simplified as in figure 13. Truffle provides
these inlined methods in an intermediate representation to Graal. Then Graal can JIT compile it to efficient code.

4.4 Behavior Object

An important corner stone of Reactive Ruby is the behavior object, which is the runtime object that represents a
behavior. Every reactive operator works with it. Since almost the complete Reactive Ruby code depends on the behavior
object, it will be explained in more detail than other parts of Reactive Ruby. We also hope that explaining the behavior
object more thoroughly will help a reader who is unfamiliar with Truffle to better understand some ideas behind it.
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Figure 13: Conceptional overview of an inlined chain of 3 behaviors.

The behavior object, like most non-primitive values in Truffle Ruby, is implemented in a Java class. Truffle allows
arbitrary Java classes to describe a value in the language. To represent these values in the interpreter, Truffle creates
objects from these classes. The following code is a naive but valid implementation of the data saved in a behavior.

public c lass Behavior {
Object value ;
Object behaviorExpr ;

}

This implementation is slow because it saves the value of a behavior in an object. A behavior can hold an arbitrary
value, for example a string or an int. When the system saves a primitive value in an object, it needs to box this value
before storing. To box a value before storing and to unbox a value before reading adds an overhead to the access of
the value. Therefore, Reactive Ruby provides specializations for behaviors which contain primitive values. To allow this
specialization, the behavior object must be able to store primitive values without boxing. Therefore, the Behavior
class can contain a two int attribute and an object attribute for the value.

public c lass Behavior {
in t valueP1 ;
in t valueP2 ;
Object valueO ;
. . .

}

In this implementation, the interpreter (or the compiled code) can store primitive values in valueP1 and non-primitive
values in valueO. In this implementation, the attribute valueP1 would not only represent int values but also, e.g., boolean
values. Unfortunately, this is not enough. A behavior can hold, for example, a long value. Therefore, the Behavior class
contains a second int attribute valueP2 and a long value is saved in valueP1 and valueP2. An efficient implementation of
the reading and writing functionality for object attributes is complex. Therefore, the behavior object uses the Truffle
object storage model (OSM) [43] which provides the functionality to efficiently read and write to object attributes.

Reactive Ruby uses the OSM to save, for example the value a behavior holds. A class that implements a runtime value
can use the OSM and attributes together to describe this value. A still simplified version of the behavior object is the
following. This version of the behavior object uses the OSM to store the value held by a behavior and the attribute
successors to save the successor behaviors.

public c lass Behavior {
private f i n a l DynamicObject dynamicObject ;
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Behavior [] suc ce s so r s ;
. . .

}

The attribute DynamicObject provides an interface to Truffle OSM. Reactive Ruby uses the OSM only for some informa-
tion. In more detail, Reactive Ruby saves information which the language uses and information which are not shared
by all behaviors in the OSM. For example, an application can read the value hold by a behavior, therefore it is saved in
the OSM. Information which are only used in the runtime system are saved as normal attributes in the Behavior class
because that reduces the implementation complexity and does not create a significant performance difference.

Listing 8 shows the important parts of the description of the behavior object. The explanation of the operators
(section 4.5) and the description of the change propagation implementation (section 4.6) use the behavior object,
therefore it is explained in detail here.

• Line 3 adds the dynamicObject (interface to the Truffle OSM) to the behavior object. Reactive Ruby saves
the value a behavior holds in the OSM. In addition, the behavior object uses it to stores information which
only some special behaviors use, e.g., the take operator saves a counter variable in it.

• The attribute successorBehaviorNode (line 4) stores all successor nodes in the dependency graph.

• The attributes functionStore (line 6) and functionStoreSize (line 7) store the handlers, which are Ruby blocks.
The system calls these blocks when the value a behavior holds changes.

• The attribute id (line 9) is the ID of a behavior. All behaviors, and not only the source behaviors, have an ID. The
ID is useful for debugging and error handling.

• The attribute sourcePreCount (line 11) stores the ID of all sources that can reach this behavior. Likewise, the
attribute sourcePreCount saves for each source the number of predecessors this source can reach. The annotation
@CompilerDirectives.CompilationFinal provides Graal with the information that it can consider the annotated
attribute as constant in the compiled code.

• The attribute chain (line 12) is a flag which indicates that this behavior only depends on one behavior. The runtime
system uses this flag to create specialized propagation code.

• The attribute type (line 14) is a flag that provides information about which behavior expressions a behavior has.
For example, it can indicate that the behavior expression is the map operator. This flag is important for the
optimization of certain behavior expressions.

• The attributes count (line 16) and changed (line 17) are used during the propagation phase. For more information,
one can read about propagation algorithm in section 4.2.1.

1 public f i n a l c lass BehaviorObject extends RubyBasicObject {
2 // i n h e r i t e d from RubyBas i cOb j e c t
3 DynamicObject dynamicObject ;
4 private BehaviorObject [] successorBehaviorNode ;
5
6 private Object func t i onS to re ;
7 private in t f unc t i onS to reS i ze = 0;
8
9 private f i n a l long id ;

10
11 @CompilerDirect ives . Compi la t ionF ina l long [ ] [ ] sourcePreCount ;
12 @CompilerDirect ives . Compi la t ionF ina l boolean chain ;
13
14 @CompilerDirect ives . Compi la t ionF ina l in t type ;
15
16 private in t count = 0;
17 private boolean changed = f a l se
18
19 }

Listing 8: The Behavior Class.

The BehaviorObject class is used to create both the runtime value of a source behavior and a non-source behavior.
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4.5 Operators

The implementation of the operators consists of two components. The first component is a method which creates a new
behavior (behavior object) whose behavior expression represents this operator. The second component implements
the functionality of the operator. It is executed during the change propagation algorithm.

Creation of New Behaviors via Operators
Methods of the behavior class and the source class implement the component of an operator which creates new

behaviors. Most operators work in the same way for behaviors and sources. Therefore, both classes share the method
implementation if possible.

Operators create new behaviors (behavior object) and can add attributes to the behavior via the OSM. Subse-
quently, they initialize the added attributes and add the new behavior to the dependency graph. To do so, the operators
add the new behavior to the list of successors of all behaviors on which it depends and it adds all these behaviors as
its predecessors. Then, an operator calculates the set of sources which can reach the new behavior and calculates the
number of predecessors each of these sources can reach.

After the operator has added the new behavior to the dependency graph and has added the necessary attributes, it
calculates the initial value of the new behavior.

The Functionality of the Behavior Operators
The operators are implemented in small trees. This is contrary to classical operators like, for example, + which

are implemented in single nodes. These trees implement the functionality which is needed to reevaluate the behavior
expression created by the operators and to save the new value.

In general, a behavior operator needs to read the values of the predecessor behaviors. After that, it recalculates the
behavior expression and updates the value of the current behavior.

Some behavior operators depend on exactly one predecessor. This is for example the case with the filter operator.
In this case, the operator can access the value of the predecessor behavior from the change event. The other case, in
which a behavior operator depends on more than one predecessor, is slightly more complex. First, the operator needs to
access the list of predecessors. Then, it must read the values of all predecessors. After that, it can reevaluate the behavior
expression and save the new value.

4.5.1 Map Operator

This chapter only describes the map operators in more detail because the implementations of the other operators are
similar.

We chose to explain the map operator because it has a clear and simple semantics. The map operator of a behavior b
takes as parameters a number of behaviors b1, ... , bn and a Ruby block f. It creates a new behavior bnew which depends
on the behavior b and the behaviors b1, ... , bn. The value of behavior bnew is the Ruby block f applied to the values of
b and b1, ... , bn.

The map operator can create two different behaviors. The map operator of b can either be called with the parameters
b1, ... , bn or without the parameters b1, ... , bn. For reasons of convenience, we name the map operator without the
parameters b1, ... , bn map0 and the map operator with the parameters b1, ... , bn mapN. If the explanation for map0
and mapN is the same, we use the name map.

Operators in Reactive Ruby are implemented in two components. One component handles the creation of new behav-
iors (behavior object) and its initialization. The second component handles the recalculation of the operator in the
propagation phase.

Creation and Initialization of a New Map Behavior
The creation and initialization of a new behavior (behavior object) is currently an interpreter only operation. This

means that Graal will not JIT compile this code. The following explanation will use the object layout of the behavior
object (listing 12). The map operator performs the following steps:

• It creates a new behavior object. The flag type is set to map0 or mapN.

• It inserts the new behavior object in the dependency graph. For that, the map operator adds the new behavior
to the list of successor nodes of behavior b. The mapN operator also inserts the new behavior in the list of successors
nodes of the behaviors b1, ... , bn. Furthermore, the mapN operator saves the nodes b and b1, ... , bn as its
predecessor nodes. The predecessor nodes are saved in the dynamicObject of the new behavior.

• It calculates the sources which can reach the new behavior. For each source it calculates the number of predecessor
it can reach. This information is stored in sourcePreCount. The map0 operator sets the chain flag to true.
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• The operator saves the Ruby block f in the OSM (dynamicObject). This is an operator specific attribute. Not all
operators need to save a Ruby block.

• The map0 operator reads the value of behavior b. The mapN operator reads the value of behavior b and behaviors
b1, ... , bn.

• The operator executes block f with the value of the behaviors as its arguments, which it read in the last step.

• It saves the return value of block f in dynamicObject as the value it holds.

• Lastly, it returns the new behavior.

Recalculation of the Map Operator during Change Propagation
When the runtime system recalculates a behavior expression of a behavior which is created by the map operator during

the change propagation phase, the following steps happen.

• The map node reads block f from the dynamicObject (OSM).

• If the operator is map0, it reads the value of the behavior which is provided inside the change event. If the operator
is mapN, it accesses the predecessor behaviors from dynamicObject. Subsequently, it reads the value of each of
the predecessor behaviors.

• It calls block f. It uses the values which it read in the last step as arguments for the block call.

• It saves the result of the block call as the new value the behavior holds.

• If the new value is different from its old value, it notifies the change propagation logic that it has changed.

4.6 Implementation of the Change Propagation

The implementation aims to fully utilize inline caches to provide an efficient runtime system. Therefore, every behavior
node in the dependency graph locally handles the functionalities necessary for the propagation of changes. Furthermore,
the propagation of changes works without a central manager. The entry point to change propagation logic is the propa-
gation method. All behaviors use this method to handle the propagation. Figure 11 visualizes the AST of this method.
As an exception, source nodes have a different method which handles the propagation. However, it is similar and will
therefore not be explained in detail.

The propagation method handles the whole change propagation for a behavior (behvior object). This method
ensures glitch freedom, executes the behavior expression and handles the notification of registered handlers. In addition,
it notifies the successor behaviors of the behavior.

The behaviors communicate during the change propagation by calling the propagation method on successor be-
haviors. When a source changes, it calls this method on all successor behaviors. If a behavior changes, it likewise calls
this method on all successor behaviors.

In the propagation phase, behaviors pass information (change event) to their successor behaviors. Behaviors pass this
change event via the arguments of the propagation method call. The information which is passed to the successor
nodes during change propagation is the following:

• Source ID: The source ID stores which source node was changed in the current propagation turn.

• Last Node: The behavior which sends the change event.

• Changed: The information whether the behavior which sends the change event changed its value.

The implementation of the propagation method is organized in three main components. Each of these three
components is a subtree of the AST which implements the propagation method. One component checks when the
behavior receives a change event if it needs to wait. A behavior can receive multiple change events in one propagation
turn and it must wait until it receives the last change event. This component purpose is to ensure glitch freedom.

Another component (subtree) reevaluates the behavior expression and it handles the order of change events in case
they happen simultaneously. In addition, it saves the new value of the behavior and it notifies handlers if handlers are
registered.

The last component (subtree) sends out a new change event to all successors of the current behavior. For that, it first
creates a new change event which contains the source that started the propagation phase. In addition, it contains the
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Figure 14: The left figure shows a part of a dependency graph in which a behavior only depends on one predecessor, and
the right figure shows a part of a dependency graph in which a behavior depends on an arbitrary number of
predecessors.

current behavior as the last node in the change event. Moreover, it comprises the information whether the behavior value
of the current behavior was changed.

Initially, behaviors share the propagation method. However, tree cloning allows the duplication of this method
for some behaviors. Section 4.3.2 explains this process in more detail. Here is important that some behaviors share the
propagation method and some behaviors have their own version.

The rest of this section explains the subtrees of the propagation method.

4.6.1 Glitch Freedom Logic

This subtree of the propagation method ensures glitch freedom. It uses a dispatch chain (section 4.3) to provide
speculative optimizations for certain graph structures. In the propagation algorithm a behavior only depends on its pre-
decessor and successor behaviors. To guarantee glitch freedom only the predecessor nodes are important, all predecessor
nodes of the behavior in the dependency graph need to be in their final state for the current propagation turn. This is the
case if they have already been reevaluated or if they are in the set of nodes which do not change in the current turn.

There are two local graph structures which are distinguished here (figure 14). The behavior can have exactly one
predecessor (figure 14, left graph). Alternatively, the behavior can have an arbitrary number of predecessor nodes
(figure 14, right graph).

Reactive Ruby provides one specialized dispatch chain node for the chain structure (figure 14, left graph). For the
non-chain structure (figure 14, right graph) it provides a specialized dispatch chain node and a generic dispatch chain
node.

Specialized Chain Node
For a behavior which has one predecessor behavior the glitch freedom check is trivial. Since the behavior has one

predecessor behavior, it receives one change event at most in every propagation turn. The only task of the specialized
chain node for a chain structure is therefore to check if the current behavior has one predecessor behavior. Every behavior
has a flag which indicates if the behavior has exactly one predecessor. The specialized chain node checks this flag and if
the flag is true, the execution of the subtree execute reactive code can start. If the current behavior has more than one
predecessor, the specialized chain node executes to the next node in the dispatch chain.

Specialized Non-Chain Node
The specialized non-chain node provides a fast glitch-free check for a cached position. It performs the glitch-free check

for each change event the behavior receives, in O(1) with a small constant overhead. Therefore, it cannot perform the
same check as performed in the SID-UP algorithm because that check needs to iterate over all predecessor nodes and
performs a calculation for each predecessor.

Every behavior saves the ID of each source which can reach that behavior in an array. In that array, the behavior also
saves the number of predecessors via which each source can reach this behavior. The specialized non-chain node stores
the position where in the behavior object a source ID and the number of predecessors this source can reach is stored.

When the specialized node is executed, it checks the following:

(1) The specialized non-chain node checks if the saved position is valid for the current behavior.
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(2) The specialized non-chain node checks if the source ID of the current change event is equal to the source ID in the
cached position.

(3) The specialized non-chain node checks if the number of the predecessor paths is equal to the number of change
events the behavior received in this propagation phase.

If all three conditions are true, the behavior will not receive any more change events. Glitch freedom is achieved for
this behavior and the system can execute the subtree reevaluate behavior expression. If only conditions (1) and (2) are
true, the node increments the counter of received change events. In this case it stops the execution and waits for the next
change event. If condition (1) or condition (2) is not valid, this specialized dispatch chain node is not able to handle the
current change event. Therefore, it executes the next node in the dispatch chain.

Generic Node
When the generic node receives a change event from the source s it does the following: It first searches for the position

where the behavior saves the number of predecessors reachable by the source s. Then, it checks if the number is equal to
the number of received change events in the current propagation phase. If that is the case, the behavior will not receive
any more change events and the subtree reevaluate behavior expression can be executed. If the behavior still needs to
wait for further change events, it will increment the counter. After that, it stops the execution and waits for the next
change event.

Unresolved Node
The unresolved node creates the specialized dispatch chain nodes above. When the unresolved node is executed, it

first checks how long the dispatch chain is. If the chain is longer than a predefined threshold, it creates a new generic
node and replaces the whole dispatch chain with the new node. If there is still space in the dispatch chain, it creates
one of the specialized nodes. If the current behavior has one predecessor, it creates the specialized chain node. If the
current behavior has more than one predecessor, it creates the specialized non-chain node. To do so, the node searches
for the position where the current behavior saves the source ID of the current change event. After that, it creates a
specialized non-chain node for that position. When the unresolved node has performed its node replacement, it redirects
the execution to the newly created dispatch chain node.

4.6.2 Reevaluation of the Behavior Expression

This subtree manages the execution of the behavior expression and the saving of the new behavior value. A dispatch
chain implements the functionality. There is a specialized node which caches the different reactive operators and one
generic node which can handle all operators. The different operator nodes read and write different attributes from the
behavior object. Section 4.5 provides further information about how the different operators are implemented in
Reactive Ruby.

The cached behavior operator is the specialized node in the dispatch chain. The uncached behavior operator node is
the generic node in the dispatch chain.

Cached Behavior Operator
The cached behavior operator node caches a behavior operator, for example the map operator. When this node is

executed for a behavior, it checks if it cached the right operator. In order to do so, it checks if the type of the behavior is
equal to the type of the cached operator. If it has cached the right operator, it executes the cached functionality. If it did
not cache the right operator, it executes the next node in the dispatch chain.

Uncached Behavior Operator
The uncached behavior operator node is the generic node in the dispatch chain. When this node is executed for a

behavior, it checks which operator this behavior has. It then calls the operator which can handle the current behavior.

Uninitialized Node
The uninitialized node creates the specialized node cached behavior operator and the generic node. When it is exe-

cuted, it first checks how long the dispatch chain is. If the dispatch chain is longer than a predefined threshold, it creates
the generic node and replaces the whole dispatch chain with the generic node. If there is still space in the dispatch chain,
the uninitialized node creates the cached behavior operator node. To do so, it checks which operator the behavior has,
looks up that operator and then creates the specialized node for this operator.

After the uninitialized node has performed its node replacement, it redirects the execution to the newly created node.
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Notify Handlers
This subtree calls Ruby blocks after the value of a behavior has changed and is part of the revalue behavior expression

subtree (figure 11). It is specialized on how many handlers a behavior has. It provides a specialization for zero and for
one handler. Additionally, a generic node which can handle an arbitrary amount of handlers exists.

Zero Handler: In case a behavior has zero handlers registered, the specialized dispatch chain node is simple, it does
not need to call any handler. This node checks for a behavior if this behavior has no registered handlers, in this case the
notification process is finished. Otherwise, the zero handler node executes the next node in the dispatch chain.

One Handler: The specialized node for one handler needs to call this handler. When this node is executed for a
behavior, it checks if the behavior has one registered handler. If that is the case, it executes the handler. Otherwise, this
node cannot handle the current behaviors and it executes the next node in the dispatch chain.

Arbitrary Number of Handlers: The generic node can call an arbitrary number of handlers. When the node is executed,
it reads the handlers from the behavior. Then it iterates over the registered blocks and calls them.

Uninitialized Node: This node creates the specialized nodes. First, it checks if the dispatch chain is too long. If this is
the case, it creates the arbitrary number of handler node. Otherwise, it checks how many handlers are registered at the
current behavior. Depending on the number of register handlers, it creates the zero handler node, one handler node or
an arbitrary number of handlers node and inserts the new node in the dispatch chain. After that, the uninitialized node
executes the newly created node.

4.6.3 Change Event Propagation

The last subtree of the propagation method handles the notification of dependent behaviors. The subtree provides
specializations for different numbers of successor behaviors. To do so, it uses a dispatch chain.

The specialized nodes as well as the generic nodes use a PIC to call the propagation method on successor behaviors.
Especially in case of one successor behavior this PIC allows inlining.

Constant Number of Successors
This specialized node creates an optimization for a constant number of successor behaviors. The node is specialized

for N successor behaviors and uses a PIC to call the successor behaviors.
When the system executes the node, it checks if the number of successor behaviors for the current behavior is equal

to N. If this is the case, it calls the successor behaviors. For that, it has an unrolled loop in which it reads the successor
behaviors and then calls the propagation method for each of these behaviors. This also creates an efficient code for
a behavior which only has one successor. If the number of successor behaviors of the current behavior is not equal to N,
this node execution the next node in the dispatch chain.

Variable Number of Successors
The generic node can notify an arbitrary number of successor behaviors. When it is executed for a behavior, it iterates

over the successor behaviors. It calls the propagation method for each successor behavior.

Uninitialized Node
The uninitialized node creates the specialized nodes. First, it checks if the dispatch chain exceeds the predefined max

length. In this case it creates the variable number of successors node. If that is not the case, it checks how many successor
behaviors the current behavior has and then creates the constant number of successors node with N being the number of
successor behaviors. After that, the uninitialized node executes to the newly created node.

4.7 Design Choices and Limitations of Reactive Ruby

To conclude the presentation of Reactive Ruby, we briefly discuss how its features fit into the landscape of reactive
programming languages presented in Chapter 2.

Glitch freedom
Reactive Ruby is a glitch-free reactive language. The propagation algorithm of Reactive Ruby guarantees a glitch-
free propagation and does not evaluate unnecessary behavior expressions in a propagation turn.

Lifting
Reactive Ruby uses a mixed strategy when it comes to lifting. In behavior expressions, the developer needs to
perform manual lifting. He needs to access the value of a behavior via the operator value. Then he can work
with the value inside the behavior expression. In addition, Reactive Ruby offers explicit lifting. The developer can
use a number of operators to lift a Ruby block so that it can work with behaviors. Reactive Ruby, for examples
offers the map operator which allows lifting a block which then can work with the value of one or more behaviors.
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Unfortunately Reactive Ruby does not provide any Ruby operators which it already lifted. The implementation of
a lifted version of, for example + is not difficult. However, time consuming.

Evaluation model
Reactive Ruby uses a push-based evaluation model which applies eager evaluation. Whenever a behavior receives
a change event and glitch-freedom is achieved, it will evaluate its behavior expression and update its value.

Dependency graph
The dependencies in Reactive Ruby are static. The semantics of Reactive Ruby only allows behaviors which prede-
cessors do not change.

4.7.1 Limitations

The current implementation of Reactive Ruby has a number of limitations that we plan to relax in future work. In the
final sections, we provide details about the simplifications we made in Reactive Ruby. An outlook on future research is
presented in section 6.2.

Cyclic dependencies
In Reactive Ruby, cyclic dependencies are not allowed. The syntax permits the creation of cyclic dependencies, but
they result in a runtime error. Therefore, the developer need to ensure that he does not create cyclic dependencies.

Single sources of changes
A propagation phase in Reactive Ruby can only handle one source change at a time. Once a propagation turn starts,
no source is allowed to change. In a multi-threaded environment a global lock needs to be used to guarantee that.
Therefore, Reactive Ruby is complex to use in a multi threaded environment.

High-order reactive and behavior expressions with dynamic dependency discovery
Reactive Ruby does not support higher order behaviors. Furthermore, it does not perform dynamic dependency dis-
covery in the behavior expressions. As a consequence, the dependency graph is static. With that, the expressibility
of Reactive Ruby is lower than, for example Scala.React [30].

Limitation of the discovery of dependencies in behavior expression
There is a limitation to the identification of dependencies in the behavior expression. Reactive Ruby only discovers
behaviors inside the behaviorexpr which are directly read from a local variable. Behaviors which, for example,
are read in method calls or returned by methods are not identified.

In more details, when the system creates a behavior expression, it iterates over all local variables which are read in
the block and checks if they are defined in the closure of the block. For all variables that are defined in the closure
of the block, the system checks if the variable holds a behavior. All behaviors identified this way are the system
identifies as predecessors of the new behavior.

In conclusion, Reactive Ruby does not discover e.g., behaviors which are read from instance variables.

Limitation in the optimization
Reactive Ruby starts the optimization in the change propagation at points where the reactive code interacts with
the imperative code. That means that Reactive Ruby starts these optimizations at a call site to the emit method.
A consequence is that different sources do not share optimizations. In other words, every source node starts its
own optimization at the call site of the emit method and only this call site uses these optimizations.

The reason for this limitation is that all behaviors initially share the propagation method. Therefore, this
method is likely to be in a generic state. Generic state here means that most dispatch chains in this method do not
provide specializations and use the generic nodes to perform the semantics. Truffle can JIT compile this method
when it is in the generic state, however, it does not contain the fast speculative optimizations. Truffle needs to
clone the propagation method so that the clone can provide speculative optimizations. The point where Truffle
clones methods is in the DirectCallNode, which is used in cached dispatch node which is a specialized node in the
PIC. The emit method is small and Truffle can inline and clone this method for a call site. This cloned method
then has a high chance to contain a cached dispatch node for the propagation method and then clones this
method. The cloned propagation method can then again provide a cached dispatch node and is able to clone
the propagation method for its successors and so on.

The optimization issue will possibly be fixed if initially not all behaviors share the propagation method. In this
case the question would be which behavior should initially share the propagation method and which should
not share this method. A starting point would probably be to provide a version of the propagation method for
each place in the code that creates behaviors.
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5 Evaluation

This chapter proposes an evaluation of the results achieved in the development of Reactive Ruby. We initially discuss the
design of our evaluation procedure. Subsequently, we explain how the different benchmarks are implemented. Finally,
we describe the evaluation of the performance of Reactive Ruby in these benchmarks. The largest part of the evaluation
evaluates the peak performance of Reactive Ruby. A discussion of the influence of JIT compilation and the problem of
warm-up concludes the chapter.

5.1 Design of the Evaluation

To evaluate Reactive Ruby we chose the Observer design pattern as the base line. We consider the Observer design
pattern to be a reasonable choice, since it allows an efficient implementation of reactive applications. In addition, it is
still the most common way to implement reactive applications and reactive programming languages aim to replace it.
Moreover, in the past the research community used the Observer design pattern to compare the performance of reactive
programming libraries in different languages [30].

Another option for the evaluations would be to compare its performance against other efficient reactive languages in
Ruby. Unfortunately, very few reactive programming implementations exist in Ruby. Exceptions are early attempts to
port ReactiveX to Ruby: RxJRuby [5] and Rx.Rb [6]. The implementation of both of these is in a very early state of
development and it is not clear if they are still maintained. Frappuccino [29] is another reactive programming language
based on Ruby. However, it is also in an early state of development.

The largest part of the evaluation determines the peak performance of Reactive Ruby. For that, we evaluate its perfor-
mance in different graph structures after a sufficient amount of warm up. Besides that, we also evaluate the influence the
JIT compilation has. For that, the Reactive Ruby runtime system still performs its specialization but no JIT compilation
is triggered. This gives an important insight into the necessity of the JIT compilation. Lastly, we evaluate the warm up
characteristics of Reactive Ruby, which is a vital property for short running applications.

5.1.1 JavaScript Implementations

We extend the scope of our evaluation to include some benchmarks that focus on JavaScript. The reason for this is that
we want to estimate the performance overhead of JavaScript implementations in the perspective of applying the results
obtained in Reactive Ruby to JavaScript.

The development status of reactive languages in JavaScript is more advanced than the Ruby counterparts. In
JavaScript, reactive programming is widely used to develop reactive web applications. JavaScript offers, among oth-
ers, Flapjax, ELM and Bacon.js. There is also a well-maintained implementation of ReactiveX, which the industry actively
uses.

The evaluation of the performance of certain features across languages is difficult. A direct performance comparison
of Reactive Ruby against e.g., RxJS is not that meaningful. There are several variability directions to consider. Different
languages use different compilers and we do not want to evaluate the performance of the entire compiler infrastructure.
In addition, the base language semantics is different and it is unclear if Ruby or JavaScript is easier or harder to opti-
mize. Also, we only want to evaluate the performance of the reactive features and not the whole system. Therefore,
the performance of Reactive Ruby versus the performance of reactive programming libraries in JavaScript is compared
indirectly.

For the relative performance evaluation we compare the performance of the different reactive programming languages
against the base line in their language. That means we compare Reactive Ruby against an Observer design pattern im-
plementation in Truffle Ruby and we compare reactive programming languages in JavaScript against an Observer design
pattern implementation in JavaScript. This solution allows a reasonable relative performance evaluation of Reactive
Ruby against reactive programming libraries in JavaScript.

5.1.2 Observer Design Pattern Implementations

The Observer design pattern implementation which is used as the baseline in the benchmarks should provide a fast
propagation. That is because the benchmarks measure the time that the propagation of values through a graph structure
takes. In more detail, in one iteration of a benchmark several hundred thousand values are propagated through the
graph. In addition, the time also includes the creation of the graph structure, however, that is negligible.

The implementation uses arrays to store the observer objects instead of sets or maps which are more common. This
is due to the following reasons: we never remove observers in any benchmark. In addition, the Observer design pattern
implementation adds observers without checking if they are already added and all observers are always notified in all
benchmarks. Therefore, a constant check if an observer is present, a constant removal of an observer and a constant
lookup of a certain observer is not needed. Instead, a fast iteration over all observers is desired for which an array
provides a better data structure than a set.

In all benchmarks, we used this Observer design pattern implementation to mimic the benchmarks.
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5.1.3 Benchmark Designs

We evaluate the performance of Reactive Ruby and two reactive languages in JavaScript in different benchmarks with
different graph structures. We provide a chain, a fan and a reverse fan graph structure. In these benchmarks, the
performances of the different reactive programming languages is measured in relation to the base line which is an
implementation of the Observer design pattern. For that, the benchmarks compare the performance of reactive pro-
gramming languages in JavaScript against the performance of the Observer design pattern implementation in JavaScript.
In addition, they compare the performance of Reactive Ruby against the performance of the Observer design pattern
implementation in Ruby.

The chain structure evaluates the performance of behaviors that have one predecessor and one successor behavior.
The fan benchmarks evaluate behavior nodes which have a high number of predecessor and successor behaviors. The
reverse fan evaluates the impact of a high number of sources which reach one sink behavior.

The chain and the fan are dependency structures that are often used to evaluate the performance of reactive program-
ming [30, 15].

One iteration of a benchmark performs the following: First, it creates a new dependency graph. Then it emits a
number of changes from all sources. This has the consequence that every iteration uses new runtime data, however, the
structure of the graph remains the same. This means for the JIT compiler that it can reuse code which is based on the
structure of the graph, however, that code must be general enough so that it can work with different runtime data.

All evaluations are performed on a Intel Core i7-2640M dual core CPU with 2.8 GHz and 8 GByte ram. The operation
system is Ubuntu 14.04. All benchmark evaluations which use Graal and Truffle use the settings -Xmx500m and -
Xss2048k.

Peak Performance: In a number of benchmark evaluations we are interested in the peak performance, i.e., the stable
state performance. The peak performance is reached after all optimizations have been applied. In technical terms, we do
the following to measure the peak performance. The benchmark is repeated until the range relative to the mean of the
last N iteration is smaller than a delta. The delta for the benchmarks is 0.2 and the value of N is 10. When the benchmark
has reached the peak performance, the median of 10 successive runs is selected for the evaluation.

The Chain Benchmark
The chain benchmark builds a dependency graph composed of a line of nodes. Figure 15 shows the dependency graph.

In this benchmark, all behaviors use map { |x| x + a constant} as their behavior expressions. The constant is different
for each behavior. A chain of nodes is the simplest dependency structure in a dependency graph.

One iteration of the chain benchmark contains the creation of a chain of 10 nodes. After the creation of the chain,
200000 different change events are emitted from the source of the chain.

A chain of nodes is a dependency structure which an efficient reactive programming language needs to optimize well.
In this structure, no glitch can occur and therefore, the runtime system does not need to perform checks to ensure glitch
freedom. In addition, a behavior in a chain only needs to notify exactly one behavior when it changes.

source b b b b b b b b b

Figure 15: The dependency graph of the chain benchmark.

The Fan Benchmark
The fan benchmark builds a dependency graph in which the nodes in the graph have a high fan-out. Figure 16

visualizes the dependency graph for the fan A and the fan B benchmark.
In the fan A benchmark all nodes except the sink node have 3 successors. All b behaviors have the expression map {

|x| x + a constant value }, however, all of them use a different constant in their expression. The sink node in fan A
collects the value of all its predecessor nodes. In total, the fan A benchmark contains 14 behavior nodes and one of them
is a source node.

In the fan B benchmark, the source node has 10 successor nodes. All b behaviors have the expression map { |x| x
+ a constant value }, however all of them use a different constant in their expression. The sink node in fan B collects
the value of all its predecessor nodes. In total the fan A benchmark contains 12 behaviors and one of them is a source
behavior.

In both fan benchmarks one iteration contains the creation of the dependency graph. After the creation of the depen-
dency graph, the benchmark emits 200 000 different change events from the source node.
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Figure 16: The dependency graph of the fan A and the fan B benchmark.

The Reverse Fan Benchmark
We implemented two reverse fan benchmarks. Both build a dependency graph, which has the structure of a tree. The

leaves in that tree are the sources and the root is the sink. Figure 17 shows the dependency graphs.
In the reverse fan A benchmark the dependency graph builds a full binary tree with the sources as leaves. This

benchmark contains 15 nodes. Among these 15 nodes 8 nodes are source nodes.
The reverse fan B benchmark builds a chain of behaviors in the dependency graph. The first behavior in the chain is

connected to two source behaviors. Every other behavior in this chain is connect to one source behavior. The reverse fan
B benchmark contains 15 nodes. Among these 15 nodes 8 nodes are source nodes.

In both reverse fan benchmarks one iteration contains the creation of the dependency graph. After that, the reverse fan
A sends 200000 different change events from each source. Since it contains 8 sources, one iteration contains 1600000
change events in total. After that, the reverse fan B sends 25000 different change events from each source. Since it
contains 8 sources, one iteration contains 200000 change events in total.
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Figure 17: The dependency graph of the reverse fan benchmarks.

5.2 Evaluation of the Peak Performance

The peak performance is an important characteristic. It describes the performance of long running applications. We do
not only evaluate the peak performance of Reactive Ruby, we also evaluate the peak performance of RxJS and Bacon.js
in JavaScript.

We evaluate the peak performance of Reactive Ruby in a number of benchmarks. All of them share some descriptions,
therefore these descriptions are summarized here before we present more details. The plots (figures 18 - 20) visualize the
performance of the Observer design pattern base line implementation with the value 1, which represents the performance
of the Observer design pattern both in JavaScript and in Ruby. In addition, these plots visualize the relative performance
of the different reactive programming languages against the Observer design pattern implementation in its base language.
Moreover, all benchmarks share the result that the Graal JIT compiler was able to inline parts of the propagation code at
the call site of the emit method. In more detail, Graal inlined the propagation code up to the maximum inline code size
defined by a parameter. This is a result of an inspection of trace information, which were collected in a separate run.

5.2.1 Chain

Figure 18 visualizes the results of the chain benchmark and table 1 shows the measured execution time.
The performance of Reactive Ruby in the chain benchmark is approximately the same as the performance of the

Observer design pattern. Table 1 shows that the difference between the measured execution time of Reactive Ruby and
the Observer design pattern baseline is less than 0.01 sec. With the relative performance of ca. 1, Reactive Ruby performs
well compared to the reactive programming languages in JavaScript. That is the case since the reactive programming
languages in JavaScript are significant slower than the base line. RxJS reaches a relative performance of ca 0.09 and
Bacon.js reaches a relative performance of ca 0.03.
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Figure 18: The relative performance of Reactive Ruby, RxJS and Bacon.js compared to the Observer design pattern in the
chain benchmarks (higher is better).

Implementation Runtime in Sec
Observer Ruby 0.02
Reactive Ruby 0.02
Observer JS 0.026
RxJS 0.305
Bacon.js 0.748

Table 1: The execution time of the Observer design pattern implementations and the reactive programming languages
for the chain benchmark.

5.2.2 Fan Benchmark

Figure 19 visualizes the results of the two fan benchmarks and tables 2 and 3 shows the execution time measured.
In the fan A benchmark Reactive Ruby reaches a relative performance of around 0.8 and in the fan B benchmark

Reactive Ruby only achieves a relative performance of around 0.3. These are the worst relative performances Reactive
Ruby achieved in all benchmarks. However, Reactive Ruby still performs better than the reactive programming languages
in JavaScript do. Both reactive programming languages in both benchmarks are slower than the Observer design pattern
by more than a factor of 10. Therefore, the relative performance of Reactive Ruby is better than the relative performance
of reactive programming languages in JavaScript.

In both fan benchmarks RxJS is faster than Bacon.js. In the fan A benchmark RxJS is faster than Bacon.js by more than
a factor of 2. In addition, in the fan B benchmark RxJS is faster than bacon.js by almost a factor of 3.

Regarding the plot in figure 19, one could expect that Reactive Ruby performs significantly worse in the fan B bench-
mark than in the fan A benchmark. That is because its relative performance in the fan A benchmark is 0.82 and in the
fan B 0.26, whereas the relative performance of e.g., RxJS is around the same in both benchmarks. However, table 2
and table 3 show that Reactive Ruby performs in both cases very similarly. Truffle Ruby is, however, able to optimize
the Observer design pattern implementation for fan B very well. This is also a difference compared to JavaScript. In
JavaScript, the Observer design pattern performs very similarly in both fan benchmarks.

Implementation Runtime in Sec
Observer Ruby 0.08
Reactive Ruby 0.10
ObserverJS 0.068
RxJS 0.847
Bacon.js 1.4745

Table 2: The execution time of the Observer design pattern implementations and the reactive programming languages
for the fan A benchmark.
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Figure 19: The relative performance of Reactive Ruby, RxJS and Bacon.js compared to the Observer design pattern in the
fan A (blue) and fan B (red) benchmark (higher is better).

Implementation Runtime in Sec
Observer Ruby 0.03
Reactive Ruby 0.11
ObserverJS 0.06
RxJS 0.7275
Bacon.js 2.0885

Table 3: The execution time of the Observer design pattern implementations and the reactive programming languages
for the fan B benchmark.

5.2.3 Reverse Fan

Figure 20 visualizes the results of the two reverse fan benchmarks and tables 2 and 3 show the measured execution time.
In both benchmarks Reactive Ruby performs better than the Observer design pattern in Ruby. Tables 4 and 5 show

that the difference in execution time between Reactive Ruby and the Observer design pattern is around 0.1 sec for the
reverse fan A benchmark and 0.02-0.04 sec for the reverse fan B benchmark. However, we would not claim that our
implementation is in general faster than the Observer design pattern, although that Reactive Ruby performs better than
the Observer design pattern implementation in these benchmarks.

Reactive Ruby’s relative performance is better than the relative performance of RxJS and Bacon.js. The Observer design
pattern in JavaScript is faster than RxJS by around a factor of 10. The reactive library Bacon.js performs badly in these
benchmarks. The Observer design pattern is faster than bacon.js by more than a factor of 100.

Implementation Runtime in Sec
Observer Ruby 0.13
Reactive Ruby 0.10
ObserverJS 0.2205
RxJS 2.759
Bacon.js 58.85

Table 4: The execution time of the Observer design pattern implementations and the reactive programming languages
for the reverse fan A benchmark.
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Figure 20: The relative performance of Reactive Ruby, RxJS and Bacon.js compared to the Observer design pattern in the
reverse fan A (blue) and reverse fan B (red) benchmark (higher is better).

Implementation Runtime in Sec
Observer Ruby 0.03
Reactive Ruby 0.02
ObserverJS 0.038
RxJS 0.305
Bacon.js 7.005

Table 5: The execution time of the Observer design pattern implementations and the reactive programming languages
for the reverse fan B benchmark.

5.3 Influence of the Compiler

The optimization of Reactive Ruby consists of two parts. These parts are the specializations performed in Truffle and the
JIT compilation of the specialized code. The importance of this JIT compilation is evaluated now.

For the evaluation of the importance of JIT compilation, the runtime system of Reactive Ruby still performs all opti-
mizations in Truffle and still uses the Graal VM. That means it e.g., provides the specialized nodes for a chain of behaviors.
However, Truffle does not trigger JIT compilation, therefore stable parts of the AST will not be compiled to machine code.

We evaluated the impact of the JIT compilation on the benchmarks chain, fan A and reverse fan A. Figure 21 visualizes
the stable performance of Reactive Ruby with and without JIT compilation.

The difference is immense. The average speedup of Reactive Ruby with JIT compared to Reactive Ruby without JIT is
bigger than a factor of 50. In the chain benchmarks JIT compilation creates a speedup which is bigger than a factor of
80. In the fan A benchmark JIT compilation creates a speedup of around a factor of 27. In the reverse fan A benchmark
JIT compilation creates a speedup of around a factor of 90.

These benchmarks show how important JIT compilation is for the runtime system of Reactive Ruby. Without JIT
compilation the performance of the runtime system would be unacceptable in our opinion.
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Figure 21: This plot shows the execution time of the benchmarks chain, fan A and reverse fan A. The blue bar shows the
execution time with JIT compilation, the red bar shows the execution time without JIT compilation.

5.4 Warm-up Characteristics

Besides the peak performance the warm-up characteristics of Reactive Ruby are interesting. That is because reactive
applications are often used for web development where a long warm up is not possible.

Before the warm-up is evaluated, we do a short detour to compile options of Graal. The Truffle / Graal framework
has two compilation options. The JIT compilation can be asynchronous in a background thread or synchronous. In
general, to gain a better non-warm-up performance the asynchronous compilation is to be preferred. Both compilation
options initially slow down the execution of a program when they perform JIT compilation. However, the synchronous
compilation slows down the computation significantly more than the asynchronous compilation. Unfortunately, at the
point in time when the evaluation was performed, there was a problem with asynchronous compilation of Reactive Ruby.
Therefore, the evaluation uses synchronous compilation.

Figure 22 visualizes the execution time of benchmarks over successive iterations. The plot shows the execution time
for the chain, fan A and reverse fan A benchmark.

All three benchmarks have a similar warm-up characteristic. The first two iterations take, compared to the compiled
code, really long. In particular, they are also significantly slower than the execution of that benchmark in the interpreter
(figure 21 for the execution time without JIT compilation). In the third iteration the performance improves significantly.
The performance is then in the area of the execution's performance without JIT compilation. In the fourth iteration all
benchmarks reach, or almost reach, their peak performance.

The evaluation shows that the performance in the first iteration is by no means perfect. It is actually really slow. The
partial evaluation in Truffle with subsequent optimization and JIT compilation in Graal takes time.

The asynchronous JIT compilation improves the performance of the first iterations. However, also with asynchronous
JIT compilation, the initial iteration needs significantly more time than the compiled or interpreted code.

The slow first iterations before the runtime system reaches a good performance are not a specific problem of Reactive
Ruby. The characteristic of a slow initial performance is also present in Truffle Ruby [40]. Likewise, it is present in the
Smalltalk implementation which is implemented in Truffle [32]. The Truffle Graal system in general aims to increase the
performance of long running systems.
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Figure 22: The execution time of the first 20 iterations of Reactive Ruby in the benchmarks chain, fan A and reverse fan A
is visualized.

5.5 Conclusion

Let us reconsider the goal for the development of Reactive Ruby which is the reduction of the performance disadvantage
of reactive programming compared to the Observer design pattern. In order to reach this goal, Reactive Ruby should
combine expressions like b.map(f).map(g) during the propagation into one expression. Moreover, it should JIT compile
parts of the reactive code.

In the benchmarks Reactive Ruby is able to combine expressions like b.map(f).map(g) into one expression during the
propagation. However, there is the limitation that Reactive Ruby can only merge this kind of expression starting at the
call site of an emit method and is limited by the maximum inline size (Truffle parameter). This limitation was not an
issue in the benchmarks, however, it could be a problem in other applications.

The evaluation of the peak performance is promising. In the chain and the reverse fan benchmarks Reactive Ruby
performs as well as or even slightly better than the Observer design pattern. Especially the result that its performance in
the chain benchmark, which models an expression like b.map(f).map(g)..., is around the same as the Observer design
pattern’s performance is important, since chains are a common and unfortunately costly pattern in reactive applications.
In the fan benchmarks the performance of Reactive Ruby is still significantly slower than the one of the Observer design
pattern. This suggests that Reactive Ruby still needs to improve the implementation of behaviors which have a high fan
in and out. In summary, the optimizations of Reactive Ruby reduces the gap between the performance of the Observer
design pattern and reactive programming in these benchmarks. Additional evidence for the statement that Reactive Ruby
reduces the performance disadvantage of reactive programming is provided by the relative performance comparison to
RxJS and Bacon.js, in which Reactive Ruby performs well.

The evaluation clearly states the importance of the JIT compilation which was expected. Nevertheless, the extent of
the JIT compilation’s influence on the performance is surprising

In short, it can be stated that Reactive Ruby is a promising first step to eliminate the performance gap between reactive
programming and the Observer design pattern. However, there are a number of open issues, which we discuss now.

In the evaluation, we compared the performance of Reactive Ruby and the Observer design pattern in the same graph
structure. In particular, both graph structures have the same number of nodes. However, in real applications the graph
structures (dependency structure) of both of these will probably be different.

This takes us directly to the next issue: The evaluation does not consider real applications. In contrast, it only uses
generic graph structures with almost no application logic. Therefore, it is difficult to judge how the evaluation result will
transfer to real application.

The evaluation of the warm-up time shows an additional weakness in the Reactive Ruby runtime system. Initially,
Reactive Ruby is slow since the runtime system needs time to create efficient code. Once the code is created, it performs
well but JIT compilation takes time. This is not a specific Reactive Ruby problem, but a general problem of the approach
Truffle/Graal take. However, since reactive programming is often used to develop Web applications which in many cases
immediately need a good performance, this can be a problem.
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6 Conclusion and Outlook

This chapter concludes the thesis. We summarize the work presented so far and draw conclusions from the evaluation.
Finally, we outline future work.

6.1 Summary

This thesis describes the language and the runtime system of Reactive Ruby, a reactive language based on Truffle Ruby.
To the best of our knowledge, it is the first reactive language which provides specialized JIT compiler support.

In more detail, Reactive Ruby extends Truffle Ruby. Its runtime system is developed in the Truffle language framework.
Therefore, Reactive Ruby is implemented as an AST interpreter which uses node rewriting for local speculative optimiza-
tions. Truffle in combination with the Graal VM allows JIT compilations of these optimizations. Since the implementation
of Reactive Ruby uses a modified version of the SID UP algorithm as its propagation algorithm, nodes only communicate
with their predecessors and successors during the propagation of changes. As a consequence of that, Reactive Ruby can
provide local optimizations for the propagation of changes.

Reactive Ruby provides a number of optimizations for reactive programming. Most notably, it is able to combine
several behaviors which are close together in the dependency graph during propagation. In particular, it can combine
chains of behaviors during propagation. However, there are some limitations regarding the optimization of combining
behaviors during propagation.

The evaluation provides evidence that the optimizations of Reactive Ruby reduces the performance gap between reac-
tive programming and the Observer design pattern after warm-up. In a number of benchmarks Reactive Ruby achieves a
runtime performance equal to or a slightly better than the Observer design pattern. In particular, it achieves a runtime
performance similar to the Observer design pattern in the important chain structure. Additional evidence for a reduc-
tion of the performance gap results from the relative performance comparison to RxJS and Bacon.js since Reactive Ruby
performs better than both of these in all benchmarks. However, Reactive Ruby is still slower than the Observer design
pattern in the benchmarks which evaluated graph structures with a high fan out and fan in. In addition, the benchmarks
do not evaluate real applications.

Besides the good peak performance, the evaluation showed that the warm-up characteristics of Reactive Ruby can be
a problem. Initially, Reactive Ruby is slow and it takes time until it reaches its peak performance in the benchmarks.
This slow warm-up characteristic is not a Reactive Ruby specific problem as it affects other languages implemented with
Truffle as well. Nevertheless, it makes Reactive Ruby not well-suited for some domains.

In summary, we conclude that speculative optimizing combined with JIT compilation provides a major chance for
reactive programming. These techniques allow attacking the overhead introduced by reactive programming and reduce
the performance gap between reactive programming and the Observer design pattern.

We think that further research in this area will probably confirm that these techniques can achieve good results for
real applications and allow for faster reactive programming implementations.

6.2 Outlook

The work developed in the thesis opens several opportunities for improvement. Also, in this section we suggest new
research areas.

Expressiveness of the Reactive Language
As explained in section 4.7.1 Reactive Ruby is a reactive programming language which neither supports higher-order

reactives nor behavior expressions with dynamic dependencies. Therefore, the dependency graph of Reactive Ruby is
static. The propagation of changes in a reactive programming language with static dependencies is not as complex as in
a reactive programming language with dynamic dependencies. Further research needs to investigate if and how Truffle
can provide an efficient runtime system for reactive programming languages with dynamic dependencies. This research
contains at least two interesting questions. The first one is about possible optimizations for parts of a dependency graph
which very infrequently changes. The other question concerns suitable optimizations for parts of the dependency graph
which change on a semi regular basis.

Another restriction of Reactive Ruby is that changes to source nodes must happen mutually exclusive and that during
a propagation phase no source is allowed to change. This restriction should be relaxed in the future. Another interesting
question is if a form of pipelining during propagation is possible.

Extending the Optimization
Informally said, Reactive Ruby is only able to start the optimization of the change propagation algorithm at points

where the imperative code changes the value of a source behavior (section 4.7.1 for more information). Therefore,
Reactive Ruby is only able to combine behaviors during the change propagation starting at a source behavior. Thus,
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different sources do not share optimizations. Further research should remove these limitations. It is highly desirable that
the process of combining several behaviors during propagation is able to start at arbitrary behaviors.

Application and Evaluation
The evaluation of Reactive Ruby provides a first impression of the potentials of Truffle as a runtime system for reactive

programming. However, the scope of the evaluation of Reactive Ruby is limited. The evaluation does not evaluate
its performance in complex applications. In addition, the performance comparison of Reactive Ruby to other reactive
programming languages is across two languages. Further research should evaluate Reactive Ruby’s performance in
complex and realistic applications. To do so, it would be desirable to have more complex benchmarks as well as non-
benchmark applications. In addition, a non-cross language performance evaluation with other reactive programming
languages would be desirable.
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